BAHAN AJAR
TEKNOLOGI LABORATORIUM
MEDIS (TLM)

BIOLOGI SEL
DAN MOLEKULER

Betty Nurhayati
Sri Darmawati
BAHAN AJAR
TEKNOLOGI LABORATORIUM
MEDIS (TLM)

BIOLOGI SEL DAAN MOLEKULER

Betty Nurhayati
Sri Darmawati
Hak Cipta dan Hak Penerbitan dilindungi Undang-undang

Cetakan pertama, Oktober 2017

Penulis : 1. Dr. Betty Nurhayati, M.Si.
 2. Dr. Sri Darmawati, M.Si.

Pengembang Desain Instruksional : 1. Dra. Marisa, M.Pd.
 2. Dr. Siti Julaeha, M.A.

Desain oleh Tim P2M2 :
Kover & Ilustrasi : Nursuci Leo Saputri, A.Md.
Tata Letak : Heru Junianto, S.Kom.

Jumlah Halaman : 303
DAFTAR ISI

<table>
<thead>
<tr>
<th>BAB I. KONSEP BIOLOGI SEL, BIOLOGI MOLEKULER DAN PENGGOLONGAN SEL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Topik 1. Konsep Biologi Sel dan Biologi Molekuler</td>
<td>2</td>
</tr>
<tr>
<td>Latihan</td>
<td>4</td>
</tr>
<tr>
<td>Ringkasan</td>
<td>4</td>
</tr>
<tr>
<td>Tes 1</td>
<td>5</td>
</tr>
<tr>
<td>Topik 2. Penggolongan Jasad Hidup</td>
<td>6</td>
</tr>
<tr>
<td>Latihan</td>
<td>11</td>
</tr>
<tr>
<td>Ringkasan</td>
<td>12</td>
</tr>
<tr>
<td>Tes 2</td>
<td>12</td>
</tr>
</tbody>
</table>

Kunci Jawaban Tes 14
Daftar Pustaka 15

<table>
<thead>
<tr>
<th>BAB II. SIKLUS SEL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Topik 1. Siklus Sel</td>
<td>17</td>
</tr>
<tr>
<td>Latihan</td>
<td>23</td>
</tr>
<tr>
<td>Ringkasan</td>
<td>24</td>
</tr>
<tr>
<td>Tes 1</td>
<td>24</td>
</tr>
<tr>
<td>Kunci Jawaban Tes</td>
<td>26</td>
</tr>
<tr>
<td>Daftar Pustaka</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BAB III. ASAM NUKLEAT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Topik 1. Deoxyribonucleic Acid</td>
<td>29</td>
</tr>
<tr>
<td>Latihan</td>
<td>36</td>
</tr>
<tr>
<td>Ringkasan</td>
<td>37</td>
</tr>
<tr>
<td>Tes 1</td>
<td>37</td>
</tr>
<tr>
<td>Topik 2. Ribonucleic Acid</td>
<td>39</td>
</tr>
<tr>
<td>Latihan</td>
<td>43</td>
</tr>
<tr>
<td>Ringkasan</td>
<td>43</td>
</tr>
<tr>
<td>Tes 2</td>
<td>43</td>
</tr>
</tbody>
</table>
Kunci Jawaban Tes .. 45
Daftar Pustaka.. 46

BAB IV. PROTEIN
Topik 1. Protein.. 48
Latihan.. 57
Ringkasan.. 57
Tes 1.. 58

Topik 2. Pencernaan Protein pada Tubuh Manusia... 60
Latihan.. 63
Ringkasan.. 63
Tes 2.. 64

Kunci Jawaban Tes .. 66
Daftar Pustaka.. 67

BAB V. SINTESIS PROTEIN
Topik 1. Sintesis Protein pada sel Eukaryot.. 69
Latihan.. 76
Ringkasan.. 76
Tes 1.. 77

Topik 2. Sintesis Protein pada sel prokaryot.. 78
Latihan.. 80
Ringkasan.. 81
Tes 2.. 81

Kunci Jawaban Tes .. 82
Daftar Pustaka.. 83

BAB VI. TEKNIK DASAR ANALISIS BIOLOGI MOLEKULER
Topik 1. Teknik Dasar Analisis Biologi Molekuler Untuk Asam Nukleat dan Protein...... 85
Latihan.. 104
Ringkasan.. 105
Tes 1.. 108
BAB I
KONSEP BIOLOGI SEL, BIOLOGI MOLEKULER
DAN PENGGOLONGAN SEL

Dr. Sri Darmawati, M.Si

Untuk mempelajari bab ini, pembahasan diawali dengan penggolongan makhluk hidup di dunia, mulai dari yang paling sederhana sampai dengan yang kompleks.

Uraian dalam dari bab ini terdiri dari 2 topik, yaitu:

1. Topik 1 - Konsep Biologi Sel dan Biologi Molekuler
2. Topik 2 - Penggolongan Jasad hidup
Topik 1
Konsep Biologi Sel dan Biologi Molekuler

Biologi sel adalah ilmu yang mempelajari sel, baik pengertiannya maupun organella yang ada di dalam sel serta fungsinya. Tubuh organisme hidup tersusun oleh sel, apabila organisme hidup tersebut hanya memiliki satu sel termasuk organisme uniseluler seperti yeast, protozoa, dan bakteri. Organisme yang tersusun dari banyak sel dikenal dengan istilah organisme multiseluler, contohnya adalah manusia, hewan dan tumbuhan.

Sel adalah unit terkecil dari kehidupan, yang memiliki bentuk dan ukuran yang berbeda-beda tergantung tempat dan fungsi dari jaringan yang disusunnya.

Sel pertama kali yang ditemukan oleh Robert Hooke pada tahun 1665. Sel dalam bahasa Latin adalah cellula yang artinya bilik kecil. Mengapa disebut sebagai bilik kecil? Pada awal sel ditemukan, yang terlihat adalah sel gabus yang tampak hanya seperti bilik, karena sel gabus yang diamati adalah benda mati.

Dalam perkembangannya, Hooke melihat perbedaan antara sel gabus dengan sel yang hidup. Di dalam sel hidup terdapat cairan kental yang kemudian disebut protoplasma. Dengan ditemukannya mikroskop elektron (Electron Mircoscope/EM) yang mulai dikenal dalam ilmu biologi pada tahun 1950 an, sel dapat terlihat hingga kepada komponen sel yang lebih rinci lagi. Ditemukan pula bahwa ternyata sel merupakan tempat yang berongga (cytos dalam bahasa Yunani), dan kantong yang berisi (cella dalam bahasa Romawi).

Setelah EM, fakta tentang sel semakin berkembang dengan digunakannya Scanning Electron Mircoscope (SEM) yang lebih jelas untuk dapat melihat topografi sel. Sel adalah suatu wadah yang di dalamnya terjadi aktivitas biosintesis ribuan molekul yang sangat dibutuhkan untuk kehidupan organisme yang memiliki sel tersebut. Ukuran sel maupun bentuknya sangat bervariasi, tergantung tempat dan fungsinya.

Anda dapat melihat bagaimana bentuk dari sel hewan (multiseluler) bila dilihat melalui mikroskop, baik dengan pengecatan ataupun tanpa pengecatan (Gambar 1.1). Pada contoh organisme eukaryot yang uniseluler adalah yeast (Gambar 1.2)

Konsep Biologi Molekuler

Biologi Molekuler adalah ilmu yang mempelajari sel baik pengertianya maupun organella yang di dalam sel serta fungsinya sampai ke aras molekul penyusunnya. Biologi molekuler adalah ilmu multidisiplin karena mencakup biologi sel, biokimia, dan genetika. Perhatikan contoh sel penyusun membran plasma dan membran yang membungkus macam-macam organella, yang tersusun dari lipid bilayer (dua lapisan lemak) seperti Gambar 1.3.

Gambar 1.3. Membran Lipid Bilayer (Wilbur et al. 2005)

Gambar 1.3 menunjukkan bahwa membran plasma tersusun dari dua lapisan pospolipid, yang dilengkapi dengan adanya protein transmembran serta adanya karbohidrat yang melekat di permukaan membran tersebut. Tampak bahwa dua lapisan lipid tersebut terbagi menjadi bagian yang bersifat hidrofobik (bagian yang ada di tengah, bagian yang takut akan air), dan bagian yang di luar bersifat hidrofilik. Selain mempelajari struktur ultra sel sampai ke aras molekul, Biologi m
Molekuler juga mempelajari bagaimana pertumbuhan dan perkembangan sel dilihat sampai ke aras molekul. Materi ini dapat Anda pelajari pada siklus sel.

Latihan

1) Jelaskan konsep biologi sel
2) Jelaskan biologi molekuler
3) Jelaskan definisi sel
4) Jelaskan perbedaan antara manusia dan bakteri dilihat dari sisi sel

Petunjuk jawaban latihan

Untuk menjawab pertanyaan pada latihan pada nomor:
1) Anda dapat memperhatikan tentang konsep biologi sel
2) Anda dapat memperhatikan tentang konsep biologi molekuler
3) Anda dapat memperhatikan tentang sel
4) Anda dapat memperhatikan tentang organisme multiseluler dan uni seluler, serta sel eukaryot dan prokaryot

Ringkasan

Biologi sel adalah ilmu yang mempelajari sel, baik pengertiannya maupun organella yang ada di dalam sel serta fungsinya. Sel adalah unit terkecil dari kehidupan. Sel pertama kali ditemukan oleh Robert Hook. Sel dalam bahasa Latin *cellula* berarti bilik kecil, yang di dalamnya mengandung komponen protoplasma.

Biologi molekuler adalah ilmu yang mempelajari kehidupan sampai ke aras molekul, seperti mempelajari membran plasma yang tersusun dari lipid bilayer (dua lapisan lemak), yang terdapat pula protein transmembran serta karbohidrat yang melekat di permukaannya. Lipid yang menyusun membran tersebut dalam bentuk phospolipid.
Tes 1

Setelah mempelajari topik 1 di atas, jawablah pertanyaan berikut pada kolom yang tersedia

<table>
<thead>
<tr>
<th>No.</th>
<th>Pertanyaan</th>
<th>Jawaban</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Unit terkecil dari kehidupan adalah....</td>
<td>................................</td>
</tr>
<tr>
<td>2.</td>
<td>Sel pertama kali ditemukan oleh....</td>
<td>................................</td>
</tr>
<tr>
<td>3.</td>
<td>Di dalam sel hidup terdapat cairan kental yaitu....</td>
<td>................................</td>
</tr>
<tr>
<td>4.</td>
<td>Contoh organisme eukayot uniseluler yaitu....</td>
<td>................................</td>
</tr>
<tr>
<td>5.</td>
<td>Manusia dilihat dari jumlah sel penyusunnya termasuk oraganisme....</td>
<td>................................</td>
</tr>
<tr>
<td>6.</td>
<td>Penyusun membran plasma adalah....</td>
<td>................................</td>
</tr>
<tr>
<td>7.</td>
<td>Pada membran plasma dapat dijumpai 3 makromolekul yaitu....</td>
<td>................................</td>
</tr>
<tr>
<td>8.</td>
<td>Sebutkan sifat bagian tengah dari membranplasma terhadap air</td>
<td>................................</td>
</tr>
<tr>
<td>9.</td>
<td>Jenis lipid penyusun membran plasma adalah....</td>
<td>................................</td>
</tr>
<tr>
<td>10.</td>
<td>Sebutkan arti hidrofilik....</td>
<td>................................</td>
</tr>
</tbody>
</table>
Topik 2
Penggolongan Jasad Hidup

Sistem klasifikasi/penggolongan makhluk hidup mengalami dinamika perubahan sesuai dengan perkembangan teknologi ilmu pengetahuan. Perkembangan teknologi dan ilmu pengetahuan akan menghasilkan perkembangan data berupa karakter/ciri-ciri suatu organisme yang digunakan oleh para ahli taksonomi. Berdasarkan urutannya, saat ini terdapat sistem klasifikasi sampai 8 generasi seperti yang disajikan dalam Tabel 2.1. di bawah ini.

Tabel 2.1. Perkembangan Sistem klasifikasi Makhluk Hidup

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Kingdom</td>
<td>3 Kingdom</td>
<td>2 Super kingdom</td>
<td>4 Kingdom</td>
<td>5 kingdom</td>
<td>3 Domain</td>
<td>6 Kingdom</td>
<td>7 kingdom</td>
</tr>
<tr>
<td>Belum dikenal</td>
<td>Protista</td>
<td>Prokariota</td>
<td>Monera</td>
<td>Monera</td>
<td>Bacteria</td>
<td>Bacteria</td>
<td>Bacteria</td>
</tr>
<tr>
<td>Protista</td>
<td>Eukariota</td>
<td>Protista</td>
<td>Fungi</td>
<td>Eukarya</td>
<td>Archaea</td>
<td>Archaea</td>
<td>Archaea</td>
</tr>
<tr>
<td>Plantae</td>
<td>Plantae</td>
<td>Plantae</td>
<td>Animalia</td>
<td>Animalia</td>
<td>Protozoa</td>
<td>Protozoa</td>
<td>Protozoa</td>
</tr>
<tr>
<td>Animalia</td>
<td>Animalia</td>
<td>Animalia</td>
<td>Animalia</td>
<td>Animalia</td>
<td>Chromista</td>
<td>Chromista</td>
<td>Chromista</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fungi</td>
<td>Fungi</td>
<td>Fungi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Plantae</td>
<td>Plantae</td>
<td>Plantae</td>
</tr>
</tbody>
</table>

Selain itu, Anda juga harus mempelajari tentang struktur ultra sel bakteri yang termasuk kelompok prokaryot. Mangapa bakteri perlu difahami oleh tenaga TLM? Bakteri adalah mikroorganisme yang banyak menyebabkan infeksi pada manusia. Itulah alasan
mengapa dalam setiap tindakan yang dilakukan oleh tenaga TLM harus dengan cara aseptik, untuk menghindari terjadinya infeksi pada manusia.

Berdasarkan struktur ultra sel maka sel dapat digolongkan menjadi dua kelompok yaitu sel **Eukaryot** dan sel **Prokaryot**. Penggolongan ini dilakukan oleh Chatton (1937). Semua sel baik eukaryot maupun prokaryot memiliki komponen tersebut di bawah ini:

1) Membran plasma yang berperan sebagai barier, yang sifatnya selektif
2) Cytosol, yang bentuknya semifluid, seperti jelly, yang ada di dalam sel, di dalamnya tersuspensi semua komponen sel
3) Kromosom, membawa gen yang terangkai di dalam DNA
4) Ribosom, sebagai tempat sintesis protein.

1. **Sel Eukaryot**

Di dalam sel eukaryot terdapat banyak organella yang mempunyai fungsi yang berbeda-beda. Struktur ultra sel dengan macam-macam organellanya dapat Anda lihat pada Gambar 1.4. Macam-macam organella tersebut rata-rata diameternya adalah 5µm. Adapun macam organella tersebut adalah:

a. **Nukleus** sering disebut inti sel mengandung kromosom. Di dalam kromosom terdapat DNA, dan pada DNA terangkai banyak gen yang berfungsi dalam membawa sifat keturunan dari orang tua ke keturunannya. Inti sel dibungkus oleh suatu membran, membran lipid bilayer, sehingga terpisah dari sitoplasma. Di dalam inti sel terdapat suatu massa yang bergranula, yang disebut sebagai anak inti atau **nukleolus**. Di dalam nukleolus terjadi sintesis rRNA, yang kemudian di kemas dengan protein yang diimport dari sitoplasma menjadi subunit ribosom yang besar maupun kecil. Subunit ribosom besar maupun kecil selanjutnya dibawa keluar dari nukleus melalui pori-pori membran inti menuju ke sitoplasma. Sub unit ribosom kecil dan sub unit ribosom besar kemudian diassembling menjadi **ribosom**. Setiap nukleus dapat memiliki dua atau lebih nukleolus, tergantung spesiesnya. Di dalam inti sel juga terjadi transkripsi, yang menghasilkan mRNA, yang selanjutnya mRNA tersebut ditransfer ke luar inti sel melalui pori-pori membran inti, menuju ke ribosom.

e. **Badan Golgi,** pertamakali ditemukan oleh ahli biologi dan fisika dari Italia yang bernama Camello Golgy. Fungsinya penyempurnaan hasil sintesis protein pada ribosom, penyempurnaan yang terjadi adalah folding (melipat-lipat), karboksilasi, metilase.

f. **Lysosom,** berasal dari bahasa Yunani yang artinya badan pemecah, bentuknya seperti vesikel, bulat seperti bola, merupakan kantong. Dihasilkan oleh RE kasar dan badan Golgy, badan Golgy membentuk tunas yang kemudian dilepaskan tunas tersebut, tuanas tersebut adalah lysosom. Di dalam lisosom berisi enzim-enzym hidrolitik yang fungsinya mencernak bahan makanan yang masuk ke dalam sel atau makromolekul, selain itu lysosom juga menghancurkan organella yang rusak.

g. **Vakuola,** bentuknya seperti lysosom, merupakan kantong, ukurannya bervariasi, tergantung fungsinya.
Gambar 1.4. Struktur Ultra Sel Eukaryot Beserta Macam-macam Organellanya (Wilbur et al. 2005)
2. **Sel Prokaryot**

Sel prokaryotik merupakan sel tanpa membran inti. Sel ini mempunyai materi genetik berupa DNA yang tidak terbungkus oleh membran, tetapi hanya merupakan massa yang kekentalannya lebih tinggi dibandingkan dengan kekentalan sitoplasma di sekitarnya sehingga disebut sebagai **nukleoid**. Sel prokaryotik tidak mempunyai organella sehingga struktur sel ini masih sangat sederhana. Aktivitas sel berlangsung di dalam membran sel dan di dalam sitoplasma. Sebagai contoh sel prokaryotik adalah bakteri yang umumnya merupakan organisme uniseluler dan ciri-cirinya:

a. Terdapat dinding sel yang bahan dasarnya **peptidoglikan** (kombinasi antara protein dan karbohidrat), selain itu juga dijumpai adanya lemak. Sifat dari dinding sel ini rigid (kaku) yang berada di luar membran sel, fungsinya selain melindungi isi sel juga memberikan bentuk pada sel bakteri

b. Membran sel, berada di bagian dalam dari dinding sel tetapi di luar dari sitoplasma, fungsinya memisahkan bagian dalam dan bagian luar dari sel.

c. DNA bentuknya sirkuler, superkoil, terdapat di dalam sitoplasma tanpa adanya membran yang membingkus

d. Tidak dijumpai adanya nukleus, tetapi nukleoid

e. Tidak dijumpai retikulum endoplasma baik kasar maupun halus, tetapi dijumpai ribosom yang merupakan partikel kecil yang tersusun dari protein
dan RNA. Sel bakteri adalah uniseluler tetapi mempunyai banyak ribosom sampai 10.000 kopi ribosom. Fungsi ribosom sebagai tempat sintesis protein (translasi)
f. Tidak dijumpai Mitokondria maupun badan golgi

g. Memiliki pilli/fimbriae yang tersusun dari protein pillin, fungsinya untuk melekat pada sel host, sebagai awal terjadinya infeksi.
h. Memiliki flagella, tersusun dari protein flagellin, fungsinya untuk bergerak.

Latihan

1) Jelaskan perbedaan makna eukaryot dan prokaryot
2) Sebutkan komponen yang terdapat di dalam inti sel
3) Sebutkan perbedaan fungsi RE kasar dengan RE halus
4) Sebutkan 2 macam Ribosom pada sel eukaryot
5) Jelaskan struktur DNA dan letaknya pada sel bakteri
6) Sebutkan komponen penyusun dinding sel bakteri, dan fungsinya
7) Jelaskan tentang pilli yang dimiliki oleh bakteri (penyusunnya serta fungsinya)
8) Jelaskan tentang flagel yang dimiliki oleh bakteri (penyusunnya dan fungsinya)

Petunjuk Jawaban Latihan
Untuk menjawab pertanyaan pada latihan pada nomor:
1) Anda dapat memperhatikan tentang Arti Eukaryot dan prokaryot
2) Anda dapat memperhatikan tentang inti sel pada sel eukaryot
3) Anda dapat memperhatikan tentang Retikulum Endoplasma pada sel eukaryot
4) Anda dapat memperhatikan tentang ribosom pada sel eukaryot
5) Anda dapat memperhatikan tentang DNA sel bakteri
6) Anda dapat memperhatikan tentang dinding sel bakteri
7) Anda dapat memperhatikan tentang pilli pada bakteri
8) Anda dapat memperhatikan tentang flagel pada bakteri

Ringkasan

Prokaryot yaitu organisme yang selnya tanpa inti sel sejati, karena inti sel hanya merupakan kromosom (DNA sirkuler strukturnya supercoil) yang merupakan komponen yang tampak lebih kental dibanding sitoplasma di sekitarnya yang disebut nukleoid, tidak memiliki organella seperti sel eukaryot, memiliki ribosom sebagai tempat sintesis protein, dinding sel yang tersusun dari peptidoglikan yang tampak kaku fungsinya melindungi isi sel dan memberikan bentuk pada bakteri.

Tes 2
Jawablah pertanyaan berikut pada kolom yang tersedia

<table>
<thead>
<tr>
<th>No.</th>
<th>Pertanyaan</th>
<th>Jawab</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Arti Eukaryot adalah.....</td>
<td>..................</td>
</tr>
<tr>
<td>2.</td>
<td>RE kasar karena pada permukaan membran terdapat....</td>
<td>..................</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3.</td>
<td>Ada dua macam Ribosom, sebutkan</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Tempat sintesis protein terjadi pada...</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Hasil sintesis protein disempurnakan pada organella</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Protein yang sudah sempurna disimpan pada organella</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Arti prokaryot adalah....</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Komponen penyusun dinding sel bakteri adalah....</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Tempat sintesis protein pada bakteri adalah....</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Bakteri memiliki alat untuk melekat pada sel host, yaitu..., yang tersusun dari bahan....</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Flagel pada bakteri tersusun dari..., fungsi flagel untuk....</td>
<td></td>
</tr>
</tbody>
</table>
Kunci Jawaban Tes

Tes 1
1. Sel
2. Hook
3. Protoplasma
4. Yeast
5. Multiseluler
6. Lipid bilayer
7. Lipid, protein, karbohidrat
8. Hidrofobik
9. Phopolipid
10. Suka terhadap air

Tes 2
1. Inti sejati
2. Ribosom
3. Ribosom terikat dan ribosom bebas
4. Ribosom
5. Badan Golgy
6. Lysosom
7. Pra inti, kromosomnya tidak dibungkus oleh membran, tidak memiliki inti sejati, tetapi punyanya Nukleoid
8. Peptidoglikan
9. Ribosom
10. Pilli/fimbriae, protein pillin
11. Protein flagellin, bergerak
Daftar Pustaka

Wilbur, E.B. et al., 2005. *Campbell Biology*, Manufactured in the United States of America
BAB II
SIKLUS SEL

Dr. Sri Darmawati, M.Si

Sebelum mempelajari bab ini, cobalah melakukan refleksi Anda sebagai salah satu organisme hidup, yang mengalami pertumbuhan dan perkembangan. Semula Anda berasal dari satu sel sperma dan satu sel telur yang melakukan fusi. Sel tersebut mengalami pertumbuhan dan perkembangan, maka jadilah janin, kemudian Anda lahir ke dunia.

Hari-demi hari Anda tumbuh dan berkembang, dari bayi, menjadi balita, remaja, dan dewasa. Pertumbuhan dan perkembangan yang terjadi pada tubuh kita karena terjadinya pertumbuhan dan perkembangan sel. Pertumbuhan dan perkembangan sel tersebut akan Anda pelajari dalam bab ini yaitu tentang siklus sel. Siklus sel, meliputi mitosis (profase, metafase, anafase, telofase) dan interfase (fase G1, S, G2).

Manfaat secara umum setelah mempelajari bab ini adalah Anda akan dapat menjelaskan tentang pertumbuhan yang terjadi pada fase interfase dan perkembangan sel yang terjadi pada mitosis. Dengan mempelajari materi siklus sel ini, Anda memahami bagaimana sebagai manusia bisa bertambah tinggi, bertambah berat dan bertambah lebar badannya.

Sebagai Ahli TLM, materi Siklus Sel ini sangat erat kaitannya dengan pekerjaan Anda dalam hal sterilisasi alat-alat laboratorium dari kontaminasi mikroorganisme, selain itu juga untuk menghindari terjadinya infeksi yang sangat erat hubungannya dengan mikroorganisme baik itu bakteri, protozoa, parasit yang lainnya serta virus. Untuk melakukan sterilasi, serta untuk menghindari terjadinya infeksi dari pasien ke Anda ataupun sebaliknya Anda harus memiliki pengetahuan tentang karakter sel yang akan dimatikan ataupun yang akan Anda hindari.

Setelah Anda mempelajari bab ini, Anda diharapkan dapat menjelaskan tentang pertumbuhan dan perkembangan sel yang disebut dengan siklus sel. Pada pertumbuhan sel yang Anda pelajari meliputi fase G1, fase S dan fase G2, sedangkan pada perkembangan sel yang akan Anda pelajari adalah proses pembelahan mitosis yang terdiri dari fase profase, metafase, anafase dan telofase.

Sebelum mempelajari bab ini Anda sebaiknya sudah memahami tentang struktur ultra sel eukaryot dan struktur ultra sel prokaryot. Uraian dari bab ini terdiri dari satu topik yaitu tentang Siklus Sel

Selamat Belajar
Topik 1
Siklus Sel

Sel memiliki kemampuan untuk memperbanyak diri sehingga dapat mempertahankan jenis dan sifatnya. Proses perbanyakan diri memiliki fungsi untuk perkembangbiakan maupun pertumbuhan. Perkembangbiakan yang terjadi pada sel eukariotik melibatkan adanya pembuahan dari sel gamet jantan dengan gamet betina, sedangkan perkembangbiakan pada sel prokariotik lebih tepatnya disebut dengan pembelahan/perbanyakan diri. Pembelahan sel pada prokariotik tidak melalui tahap pembelahan yang rumit, misalnya mikroorganisme *Amoeba proteus*. Sel *Amoeba proteus* akan memperbanyak diri dengan cara pembelahan biner (satu sel menjadi 2) apabila lingkungan di sekitarnya menguntungkan. Sebaliknya, apabila lingkungan ekstrem maka sel *Amoeba proteus* memanfaatkan pengaturan metabolismenya untuk mempertahankan diri.

Sel eukariotik selain memiliki kemampuan untuk berkembang biak, juga memiliki kemampuan untuk memperbaiki sel yang telah rusak dengan cara pembelahan sel. Perbaikan sel terjadi pada sel yang rusak akibat kecelakaan dari luar tubuh, maupun sel yang rusak karena faktor dari dalam tubuh (*apoptosis*).

Fungsi perbaikan sel juga dapat terjadi pada sel yang sudah tua sehingga harus diganti dengan sel baru karena sudah tidak dapat menjalankan aktivitas sel dengan baik. Proses pembelahan sel diawali dengan penggandaan organel sel, sintesis materi genetik, dan menentukan kesiapan sel dalam membelah. Semua proses yang terjadi pada pembelahan untuk tujuan regenerasi, perkembangan atau perkembangbiakan individu, maupun pertumbuhan ukuran tubuh diatur dalam *Siklus Sel*. Sel prokariotik maupun sel eukariotik sama-sama memiliki siklus sel, namun terdapat berbagai perbedaan di antara keduanya. Untuk dapat memahami lebih jelas bagaimana mekanisme siklus sel dan tahapannya, berikut penjelasannya.

1. **Siklus Sel Pada Sel Eukariotik**

Siklus sel terbagi menjadi 2 tahapan penting yaitu tahapan pertumbuhan dan tahapan perkembangan. Tahapan pertumbuhan terdiri dari 3 fase yaitu *fase istirahat* / *G0* (Gap 0), *fase G1*, *fase S* (*sintesis*), *fase G2*. Pada fase pertumbuhan sel, terjadi *penggandaan kromosom* yaitu pada fase G1, S, G2. Pada fase perkembangan yaitu fase *M/Mitosis* (kariokinesis dan sitokinesis), terjadi pembelahan sel menjadi dua secara sempurna dan setiap sel anak membawa kromosom yang jumlahnya sama dengan sel induknya. Perhatikan Gambar 2.1.
Gambar 2.1. Siklus Sel Pada Sel Eukaryot
(Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts 2008)

Proses penggandaan kromosom terjadi pada fase S membutuhkan waktu sekitar 10 - 12 jam. Fase S merupakan fase terlama karena membutuhkan waktu separo dari waktu siklus sel. Pada saat sel memasuki fase S, kromosom akan mengganda karena terjadinya replikasi DNA. Bila pada manusia, replikasi sel yang semula kromosom jumlahnya 46, berubah menjadi dua kali lipatnya (2X46).

Selain itu terdapat sintesis berbagai protein yang dibutuhkan untuk pengaturan pertumbuhan sel dengan melibatkan proses transkripsi. Dalam proses transkripsi terjadi proses sintesis mRNA dengan DNA sebagai cetakannya dan dilanjutkan ke proses translasi. Dalam proses translasi terjadi proses sintesis protein dengan mRNA sebagai cetakannya. Protein yang disintesis pada fase G1 dan fase S dibutuhkan dalam proses persiapan untuk menuju fase M, selain itu kromosom yang disintesis juga membutuhkan protein histon.

Kromosom yang telah mengganda selanjutnya akan dibagi sama rata pada anakan sel. Selain proses pembelahan kromosom, terdapat proses pembelahan sel. Pembelahan sel terjadi pada fase M dan membutuhkan waktu sekitar 1 jam pada sel mamalia. Waktu pembelahan sel cukup singkat jika dibandingkan dengan waktu perbanyakan kromosom. Jika Anda melihat aktivitas sel dengan bantuan mikroskop cahaya, maka pembelahan kromosom dapat dibagi menjadi fase interfase yang meliputi (G0, G1, S, G2) dan fase pembelahan mitosis maupun meiosis.

Pembelahan mitosis terjadi pada sel tubuh/autosom, sedangkan pembelahan meiosis terjadi di sel gamet. Kenampakan kromosom di setiap fase yang terdapat pada mitosis maupun meiosis, dapat diamati menggunakan mikroskop cahaya. Pada tahap interfase, sel tidak terlihat menjalankan aktivitas apapun, namun ternyata di fase interfase sel mempersiapkan kebutuhan pembelahan dimulai dari perbanyakan organel, perbanyakan kromosom, hingga sel siap membelah.
2. Mitosis

Mitosis adalah proses pembelahan sel induk menjadi dua sel anakan secara sempurna, dimana setiap sel anakan membawa kromosom yang jumlahnya sama dengan sel induknya, pada fase inilah yang disebut sebagai perkembangan karena dari satu sel berkembang menjadi dua sel, yang terdiri dari dua periistiwa besar yaitu: 1) mitosis: dimana pada periistiwa ini terjadi pembagian kromosom pada dua inti sel dari calon sel anakan. 2) Sitokinesis: yaitu terjadinya pembagian sitoplasma menjadi dua bagian sama untuk dua sel anakan. Pada fase M ini membutuhkan waktu kurang dari satu jam untuk sel eukaryot. Fase M ini terdiri dari empat tahapan, berurutan mulai dari profase, metafase, anafase dan telofase (Gambar. 2.2.). 1) Profase: Pada fase ini terjadi proses penebalan pada benang-benang kromosom menjadi kromatid, namun membran inti sel masih menyelimuti kromatid tersebut. 2) Metafase: yang ditandai dengan hilangnya membran inti, kemudian benang-benang kromatid berada pada bagian ekuator. 3) Anafase: benang-benang kromatid ditarik pada posisi dua kutub yang berlawanan oleh benang-benang spindel. 4) Telofase: Benang-benang kromatid pada masing-masing kutub tersebut kemudian dibungkus oleh membran yang disebut sebagai membran inti. Sehingga pada fase telofase ini sudah terbentuk dua inti sel (kariokinesis) yang ditandai terbentuknya membran inti, dan ditandai dengan adanya pemisahan sitoplasma (sitokinesis), dan akhirnya dihasilkan dua sel anakan yang sempurna, dimana setiap sel anakan membawa 23 pasang kromosom yang sama persis dengan jumlah kromosom sel induknya.

Gambar 2.2. Mitosis Pada Sel Eukaryot
(Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts 2008)
3. **Interfase**

Fase G1 dan G2 pada siklus sel tidak hanya melakukan perbanyakan organel, namun juga bertugas mengatur dan memonitor lingkungan internal maupun eksternal sel, serta memastikan bahwa kondisi sudah sesuai dan persiapan sudah lengkap untuk sel membelah. G1 memiliki peran untuk memonitor lingkungan eksternal. Jika lingkungan di luar sel belum memungkinkan untuk melakukan penggandaan organel, maka sel akan masuk ke fase istirahat atau G0.

Analisis siklus sel dapat digunakan untuk menentukan adanya apoptosis (program kematian sel), mutasi sel, maupun menguji keberhasilan poliploidi. Salah satu organism eukariotik uniseluler yaitu Schizosaccharomyces pombe yang mengalami pengaruh suhu ekstrem dari luar (ekstraseluler) dalam siklus selnya akan bertahan pada G1. Pada suhu yang sesuai dengan sel, sel akan mengalami siklus yang lengkap seperti Gambar 2.3. Siklus sel yang berjalan normal seperti ditunjukkan pada Gambar 2.4.
4. Sistem Kontrol Untuk Siklus Sel

Gambar 2.5. Sistem Kontrol Pada Siklus Sel Terjadi Pada 3 Tahapan
(Pada akhir fase G1 akan masuk fase S, 2. Pada akhir fase G2 mau masuk fase M, 3. Pada fase M)
(Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts 2008)
5. Kontrol Siklus Sel Cdks (Cyclin-Dependent Protein Kinases)

Terdapat 4 kelas protein cyclin, masing-masing memiliki peran pada siklus sel tertentu yang akan berikatan pada Cdks yang spesifik sehingga dapat berfungsi. Semua sel eukariotik membutuhkan protein Cyclin. Empat macam protein cyclin tersebut adalah:

1. G1-Cdk
2. G1/S-cyclin mengaktivasi Cdks pada akhir fase G1, memicu sel untuk masuk ke tahap sintesis. Konsentrasinya akan menurun pada fase S
3. S-cyclin berikatan dengan Cd menstimulasi penggandaan kromosom, S-cyclin akan meningkat hingga masuk ke fase mitosis, cyclin ini juga memiliki peran untuk mengontrol awal pembelahan mitosis (profase)

Adapun mekanisme hubungan antara protein cyclin dengan Cdk pada proses siklus sel ditunjukkan pada Tabel 2.1. dan Gambar 2.6.

<table>
<thead>
<tr>
<th>Kompleks Cyclin-Cdk</th>
<th>Vertebrata Cyclin</th>
<th>Vertebrata Cdk</th>
<th>Budding yeast Cyclin</th>
<th>Budding yeast Cdk</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1-Cdk</td>
<td>Cyclin D</td>
<td>Cdk 4, Cdk 6</td>
<td>Cln3</td>
<td>Cdk 1 **</td>
</tr>
<tr>
<td>G1/S Cdk</td>
<td>Cyclin E</td>
<td>Cdk 2</td>
<td>Cln1, 2</td>
<td>Cdk 1</td>
</tr>
<tr>
<td>S-Cdk</td>
<td>Cyclin A</td>
<td>Cdk 2, Cdk 1 **</td>
<td>Clb 5, 6</td>
<td>Cdk 1</td>
</tr>
<tr>
<td>M-Cdk</td>
<td>Cyclin B</td>
<td>Cdk1</td>
<td>Clb 1, 2, 3, 4</td>
<td>Cdk 1</td>
</tr>
</tbody>
</table>
Gambar 2.6. Kompleks Cyclin Cdk Dari Sistem Kontrol Siklus Sel
(Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts 2008)

Sebagai contoh mikroorganisme yang sering mengkontaminasi alat-alat kesehatan antara lain adalah: Pseudomonas aeruginosa (yang habitatnya di air, tanah), Staphylococcus epidermidis, Staphylococcus aureus (habitatnya pada kulit manusia), Bacillus sp. (habitatnya udara, air, tanah), apabila mikroorganisme tersebut masuk ke dalam tubuh manusia melalui tindakan invasif akan menyebabkan terjadinya infeksi.

LATIHAN

1) Sebutkan 4 fase pada siklus sel
2) Bearapa jam Siklus sel pada manusia berlangsung
3) Jelaskan Fase-fase pada Fase Mitosis
4) Sebutkan pada fase apa saja checkpoint terjadi.

Petunjuk Jawaban latihan

Untuk menjawab latihan tersebut:
1) Anda dapat memperhatikan fase-fase pada siklus sel
2) Anda dapat memperhatikan waktu yang dibutuhkan dalam proses siklus sel
3) Anda dapat memperhatikan Fase Mitosis pada siklus sel
4) Anda dapat memperhatikan sistem kontrol untuk siklus sel
RINGKASAN

Proses pembelahan sel diawali dengan terjadinya duplikasi komponen sel, baik DNA yang terkemas di dalam kromosom maupun organella-organella yang ada di dalam sel. Kromosom mengalami duplikasi pada fase S (sintesis) pada siklus sel, yang membutuhkan waktu paling lama (10-12 jam). Namun mulai dari fase G1, S dan G2 selalu terjadi proses duplikasi komponen sel yang lain, seperti sintesis protein selalu terjadi untuk mensintesis organella-organella yang dibutuhkan oleh setiap sel anak.

Pada proses siklus sel selalu terjadi kontrol (checkpoint control) pada 3 lokasi yaitu pada akhir fase G1, akhir fase G2 dan pada proses Mitosis (sitokinesis). Apabila system kontrol tidak berjalan dengan baik dan proses pembelahan tetap terjadi, maka akan dihasilkan sel yang mengalami mutasi.

TES 1

Jawablah pertanyaan berikut pada kolom yang telah tersedia

<table>
<thead>
<tr>
<th>No.</th>
<th>Pertanyaan</th>
<th>Jawab</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Fase ...terjadi proses sintesis DNA</td>
<td>...</td>
</tr>
<tr>
<td>2.</td>
<td>Mitosis terdiri dari 4 tahapan yaitu: G1-Cdk, G1/S-cyclin</td>
<td>a)...</td>
</tr>
<tr>
<td></td>
<td>a).....b)...c)...dan d....</td>
<td>b)...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c)...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d)...</td>
</tr>
<tr>
<td>3.</td>
<td>Pada proses pembelahan mitosis, dimana memori inti sudah mulai menghilang</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>adalah pada fase....</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Interfase terdiri dari 3 fase yaitu a)....b)....c)....</td>
<td>a)...</td>
</tr>
<tr>
<td></td>
<td>a)....b)....c)....</td>
<td>b)...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c)...</td>
</tr>
<tr>
<td>5.</td>
<td>Pada siklus sel terjadi 3 kali checkpoint, sebutkan mulai dari awal</td>
<td>a)...</td>
</tr>
<tr>
<td></td>
<td>a)....b)....c)....</td>
<td>b)...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c)...</td>
</tr>
<tr>
<td>6.</td>
<td>Checkpoint yang paling penting pada</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Pernyataan</td>
<td>Jawaban</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>7.</td>
<td>Mutasi yang tidak terdeteksi pada fase G2 dan dilanjutkan ke fase M, maka sel hasil pembelahan seterusnya akan mengalami....</td>
<td>...</td>
</tr>
<tr>
<td>8.</td>
<td>Komponen utama pada siklus sel diatur oleh protein kinase yang dikenal sebagai...</td>
<td>...</td>
</tr>
<tr>
<td>9.</td>
<td>Komplek G1/S-cyclin mengaktivasi Cdks pada fase....</td>
<td>...</td>
</tr>
<tr>
<td>10.</td>
<td>Penggandaan kromosom pada fase S akan distimulasi oleh protein cyclin....yang berikatan dengan....</td>
<td>...</td>
</tr>
</tbody>
</table>
KUNCI JAWABAN TES

1. Fase S
2. Profase, Metafase, Anafase, Telofase
3. Metafase
4. Fase G1, fase S, fase G2
5. A. Akhir G1 menuju fase S
 B. Akhir G2
 C. Mitosis (fase Anafase)
6. Fase G2
7. Mutasi
8. Cyclin-dependent kinases (Cdk)
9. Akhir G1
10. S-cyclin, Cdk
Daftar Pustaka

Waite, G.N., Waite, L.R. 2007. Applied Cell and Molecular Biology for Engineers the McGraw-Hill Companies
BAB III
ASAM NUKLEAT

Dr. Sri Darmawati, M.Si

Tugas Anda sebagai Ahli Teknologi Laboratorium Medik (ATLM), tentu selalu berhubungan dengan manusia, khususnya ketika Anda harus melakukan pemeriksaan kesehatan. Banyak sekali penyakit yang diagnosisnya melibatkan TLM; demikian pula banyak penyakit yang berhubungan dengan keturunan. Berbicara tentang keturunan, maka harus Anda pahami siapa sajakah yang berperan dalam membawa sifat keturunan dari orang tua kepada keturunannya?

Dalam bab ini Anda akan mempelajari faktor-faktor yang berperan dalam membawa sifat keturunan yaitu asam nukleat. Asam nukleat yang akan dipelajari yaitu Deoxyribonucleic Acid (DNA) dan Ribonucleic Acid (RNA) meliputi komponen penyusunnya, strukturnya, dan macamnya. Selain itu juga mempelajari tentang hubungan kromosom, kromatin, nukleosom, DNA dan Gen yang ada di dalam inti sel manusia.

Setelah mempelajari bab ini, Anda sebagai manusia ciptaan Allah yang paling sempurna akan dapat menjelaskan tentang hubungan antara kromosom, kromatin, nukleosom, DNA dan gen yang ada pada diri kita sebagai manusia. Dengan mempelajari materi ini, kita dapat lebih bersyukur dan memahami apa fungsi kita dalam kehidupan. Secara lebih spesifik, Anda sebagai TLM akan lebih memahami pentingnya mempelajari faktor-faktor yang berhubungan dengan keturunan.

Sebelum mempelajari bab ini, Anda sebaiknya sudah mengenal tentang empat macam makromolekul penyusun kehidupan, salah satunya adalah asam nukleat, juga tentang pembawa sifat keturunan dari orang tua keketurunannya. Tidak kalah penting pula, sebelum masuk pada bab ini, Anda hendaknya sudah mempelajari tentang faham struktur ultra sel eukaryot, contohnya sel manusia, serta memahami opul struktur sel bakteri sebagai pembandingnya.

Bab 3 ini memuat uraian dari 2 topik, yaitu:
1. Deoxyribonucleic Acid (DNA)
2. Ribonucleic Acid (RNA)

Selamat Belajar
Topik 1
Deoxyribonucleic Acid (DNA)

Apakah Anda tahu apa Deoxyribonucleic Acid (DNA)? Bagaimana hubungan antara kromosom, kromatin, nukleosom, DNA dan Gen yang ada di dalam setiap sel yang memiliki inti sel? Kita mulai dengan pembahasan tentang DNA. DNA adalah salah satu dari asam nukleat, selain RNA. Manusia normal memiliki 46 kromosom atau 23 pasang kromosom, terdiri dari 22 pasang autosom yaitu kromosom yang terdapat pada sel tubuh, yang jumlahnya sama baik pada laki-laki maupun perempuan sama, dan 1 pasang sex kromosom yaitu kromosom yang terdapat pada gamet. Kromosom XY pada gamet jantan (sperma), kromosom XX pada gamet betina (sel telur).

Marilah kita cobalah fahami hubungan antara kromosom, kromatin, nukleosom, DNA dan gen pada sel tubuh kita. Manusia dan hewan memiliki kromosom, kromatin, nukleosom, DNA dan gen yang tatanannya mirip. Bahkan bayi dan mencit keduanya memiliki belang putih di dahinya, yang berarti keduanya memiliki gen Kit yang sama-sama mengalami mutasi. Gen tersebut berperan dalam pemeliharaan pigmen (Gambar 3.1)

(Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts 2008)

Kromosom dijumpai di dalam inti sel pada tubuh kita. Tahukah Anda bahwa DNA tubuh kita dapat diisolasi di laboratorium? DNA dapat diisolasi dari semua bagian tubuh kita seperti: darah (kecuali sel darah merah, karena tanpa inti sel), tulang, kerokan kulit, daging, bucal smear (kerokan selaput mukosa mulut di bagian dalam pipi) dan masih banyak lagi.

DNA hasil isolasi di laboratorium tampak seperti putih telur yang terkena panas ketika belum dikeringkan. Bila kita mampu mengurai, DNA tampak panjang seperti benang obras yang halus. Setiap sel yang kita miliki membawa lebih kurang 2 meter DNA. Dua meter DNA tersebut merupakan rangkaian dari gen.
DNA di dalam setiap sel yang kita miliki, dikemas sedemikian rupa dengan protein yang disebut protein **protein histon**. DNA yang dikemas dengan protein histon disebut **nukleosom**. Rangkaian nukleosom disebut **kromatin**, kemudian rangkaian kromatin dikenal dengan **kromosom**. Secara singkat, bila kita urutkan, unsur paling kecil adalah **gen** dan yang paling rumit adalah **kromosom**. Perhatikan gambar 3.2.

![Diagram Gen-DNA-Nukleosom-Kromatin-Kromosom](image1.png)

Gambar 3.2. Hubungan Gen, DNA, Nukleosom, Kromatin, kromosom.

![Diagram Prokaryote-Eukaryote](image2.png)

Gambar 3.3. DNA Kromosom Pada Sel Bakteri (Prokaryot) dan Sel Eukaryot (Coady 2010)

Selain DNA, pada sel manusia dapat pula dijumpai kromosom yaitu DNA yang berada pada kromosom dan berada di dalam inti sel. Selain itu, dapat dijumpai pula DNA mitokondria, yaitu DNA yang terdapat pada mitokondria (Gambar 3.4).
Selain DNA kromosom adalah DNA mitokondria, yang terdapat pada mitokondria. DNA mitokondria disebut juga dengan DNA maternal, karena DNA mitokondria baik pada laki-laki ataupun perempuan berasal dari ibunya. Menapa hal ini dapat terjadi? Hal ini terjadi karena setiap terjadi pembuahan, sel telur hanya akan menerima kepala dari sperma yang membawa inti sel dan berisi DNA kromosom, sedangkan badan sperma yang membawa mitokondria tertinggal di luar inti sel. Mitokondria yang membawa DNA mitokondria tersebut berasal dari ibu. Setelah terjadi fertilisasi, prosesnya berlanjut pada proses pertumbuhan dan perkembangan.

Pada bakteri, selain dijumpai DNA kromosom, terdapat pula DNA plasmid, yaitu DNA ekstra kromosom (di luar koromosom), berbentuk sirkuler dan fungsinya menyandi protein fungsional. (Gambar 3.5)
Bakteri dapat memiliki plasmid, dapat pula tidak. Apabila memiliki plasmid, jumlahnya satu atau lebih. Perlu Anda ketahui bahwa DNA plasmid dapat berpindah dari satu sel bakteri ke sel bakteri yang lain. Perpindahan ini dapat terjadi baik antar bakteri sejenis (misalnya dari *Escherichia coli* pindah ke *Escherichia coli* yang lain, atau perpindahan antar jenis, misalnya dari *Escherichia coli* pindah ke bakteri *Salmonella typhi*). Perpindahan plasmid tersebut diperantarai oleh pilli (fimbriae), yang disebut dengan istilah konjugasi.

1. **Pengertian Asam Nukleat dan Fungsinya**

 Anda pasti sering dengar istilah DNA dan RNA, keduanya adalah asam nukleat, yang merupakan satu dari empat makromolekul penyusun kehidupan. Apa kepanjangan DNA dan RNA? DNA kepanjangannya adalah Deoksiribonucleic Acid/Asam Deoksiribonukleat dan RNA kepanjangannya Ribonucleic Acid/Asam Ribonukleat. DNA dan RNA dalam tubuh kita berfungsi untuk biosintesis protein dan sebagai pembawa sifat keturunan dari orang tua ke keturunannya.

 Asam nukleat merupakan rangkaian dari mononukleotida. Apakah mononukleotida itu? Mononukleotida merupakan monomer dari asam nukleat. Mononukleotida tersusun dari 3 molekul (Gambar 3.6)

 ![Gambar 3.6. Mononukleotida (gugus phosphat, gula 5 karbon, basa nitrogen) (Coady 2010)](image)

 Mononukleotida tersusun dari 3 komponen, yaitu:

 1. **Basa nitrogen, terdiri dari** 2 kelompok yaitu basa Purin dan Pirimidin. Basa Purin terdiri dari Adenin (A) dan Guanin (G). Basa Pirimidin terdiri dari: Timin (T), Uracil (U) dan Citosin (C) (Gambar 3.7)
2. Gula pentosa atau gula 5 karbon, karena ada 5 unsur C. Terdapat 2 jenis yaitu gula ribosa yang menyusun ribonukleotida (monomer RNA) dan gula 2-deoksiribosa yang menyusun deoxyribonukleotida (monomer DNA) (Gambar 3.8)

3. Gusus phospat (PO₄⁻³)

Gambar 3.7. Basa Purin dan Pirimidin (Coady 2010)

Gambar 3.8. Gula Ribosa dan deoksiribosa (Coady 2010)

Mononukleotida satu dengan mononukleotida yang lain dihubungkan oleh ikatan phospodiester. **Ikatan phospodiester** terbentuk antara gugus PO₄ pada atom C5 (gula pentosa) dari nukleotida satu dengan gugus OH pada atom C3 (gula pentosa) dari nukleotida yang lain. Dua nukleotida yang dihubungkan dengan satu ikatan phospodiester disebut dengan istilah dinukleotida. Semakin banyak nukleotida tentu dihubungkan oleh banyak ikatan phospodiester pula, disebut dengan istilah polinukleotida. Jadi polinukleotida adalah asam nukleat, yang terdiri dari DNA dan RNA. Dalam penulisan DNA maupun RNA ditulis dari 5′ (lima prime) PO₄ ke ujung 3′ (prime) OH. Seperti Gambar 3.9 atau 3.10 B.
Gambar 3.9. Cara Penulisan Asam Nukleat

Anda dapat pula melihat Gambar 3.10, rangkaian nukleotida beserta ikatan phospodiesternya.

Gambar 3.10. A. Rangkaian dari 4 mononukleotida (basa nitrogen, gula pentosa dan gugus phospat), B. Representasi penulisan polinukleotida dengan ujung 5′ dan 3′ serta adanya ikatan phospodiester (Coady 2010)

2. Struktur DNA

Mononukleotida penyusun DNA terdiri dari satu basa nitrogen (Adenin, Guanin, Citosin, Timin), satu gula 2-deoksi-D-Ribosa, dan satu gugus fosfat, bila dirangkai menjadi polinukleotida (DNA). **Strukturnya** double heliks atau double strand, strand satu dengan strand kedua bersifat komplementer atau berpasangan. Selain itu, kedua strand tersebut juga dihubungkan oleh ikatan hidrogen. Apabila nukleotida pada strand pertama membawa basa Adenin, maka nukleotida tersebut akan berpasangan dengan nukleotida yang membawa basa Timin yang terdapat pada strand kedua. Kemudian antara kedua nukleotida tersebut akan terbentuk **2 ikatan hidrogen** yang menghubungkan antara basa Adenin dengan Timin (Gambar 3.11.).
Gambar 3.11. Pasangan basa Adenin dengan Tymin yang dihubungkan oleh dua ikatan hidrogen (Coady 2010)

Bila nukleotida strand pertama membawa basa Citosin, maka nukleotida tersebut akan berpasangan dengan nukleotida yang membawa basa Guanin yang terdapat pada strand kedua. Kemudian antara kedua nukleotida tersebut akan terbentuk 3 ikatan hidrogen yang menghubungkan antara basa Citosin dengan Guanin (Gambar 3.12.)

Kedua strand bersifat saling komplementer dan keduanya dihubungkan oleh ikatan hidrogen ternyata bentuknya mirip seperti jalan kereta api, namun tidak lurus dimana strand satu dan strand yang satunya hanya bersanding saja, tetapi keduа strand pada DNA terpilin kekiri (Gambar 3.13.)

Gambar 3.13. Representasi DNA double strand saling komplementer (Coady 2010)

LATIHAN

1) Jelaskan hubungan antara kromosom, kromatin, nukleosom, DNA dan Gen.
2) Sebutkan 3 komponen penyusun DNA
3) Sebutkan 2 macam DNA pada tubuh kita
4) Jelaskan tentang struktur antara DNA
5) Sebutkan 3 macam ikatan pada DNA

Petunjuk jawaban latihan

1) Anda dapat memperhatikan tentang kromosom, kromatin, nukleosom, DNA dan Gen.
2) Anda dapat memperhatikan tentang penyusun DNA
3) Anda dapat memperhatikan tentang macam-macam DNA
4) Anda dapat memperhatikan tentang struktur DNA
5) Anda dapat memperhatikan tentang Struktur DNA
RINGKASAN

Gen adalah bagian dari DNA, DNA yang panjang dikemas oleh protein histon yang kemudian disebut sebagai nukleosom, beberapa nukleosom dirangkai menjadi kromatin, dan rangkaian kromatin adalah kromosom yang pada tubuh anda berada pada setiap inti sel.

DNA tersusun double strand yang saling berpasangan. Strand satu dengan strand yang lainnya dihubungkan oleh ikatan hidrogen. Pasangan nukleotida yang membawa Adenin adalah nukleotida yang membawa Timin, dimana keduanya dihubungkan oleh dua ikatan hidrogen. Sedangkan pasangan nukleotida yang membawa Guanin adalah nukleotida yang membawa Citosin, dimana dihubungkan oleh tiga ikatan hidrogen.

Ada dua macam DNA yaitu DNA kromosom yang berada di dalam inti sel dan DNA maternal yang berada di dalam mitokondria dan asalnya dari ibunya, baik itu laki-laki atau perempuan.

TES 1

Jawablah Pertanyaan Berikut Pada Kolom Yang Sudah Tersedia

<table>
<thead>
<tr>
<th>No.</th>
<th>Pertanyaan</th>
<th>Jawab</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>DNA yang dikemas dengan protein histon adalah....</td>
<td>...</td>
</tr>
<tr>
<td>2.</td>
<td>Kromosom rangkaian dari....</td>
<td>...</td>
</tr>
<tr>
<td>3.</td>
<td>Sebutkan dua nitrogen yang hanya terdapat pada DNA.</td>
<td>...</td>
</tr>
<tr>
<td>4.</td>
<td>Sebutkan 3 nitrogen yang membawa DNA dan RNA...</td>
<td>...</td>
</tr>
<tr>
<td>5.</td>
<td>Sebutkan gula pentosa penyusun DNA.</td>
<td>...</td>
</tr>
<tr>
<td>6.</td>
<td>Sebutkan ikatan yang hanya terdapat pada DNA</td>
<td>...</td>
</tr>
<tr>
<td>7.</td>
<td>Sebutkan 2 macam DNA pada manusia</td>
<td>...</td>
</tr>
<tr>
<td>8.</td>
<td>DNA ekstra kromosom yang bentuknya terdapat pada bakteri adalah....</td>
<td>...</td>
</tr>
</tbody>
</table>
9. DNA adalah asam nukleat, nama asam nukleat adalah.... ..

10. Ikatan yang menghubungkan antara nukleotida satu dengan nukleotida lainnya adalah....
Topik 2
Ribonucleic Acid (RNA)

Asam nukleat selain DNA adalah RNA. Jadi RNA juga merupakan rangkaian mononukleotida. DNA maupun RNA dapat diisolasi di laboratorium pula. Perbedaan komponen penyusunnya, strukturnya, dan macamnya apabila dibandingkan dengan DNA dapat ditunjukkan pada Tabel 3.1.

Tabel 3.1. Persamaan dan perbedaan komponen dan struktur antara DNA dan RNA serta macamnya

<table>
<thead>
<tr>
<th>No</th>
<th>Uraian</th>
<th>DNA</th>
<th>RNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Basa Purin</td>
<td>Adenin, Guanin</td>
<td>Adenin, Guanin</td>
</tr>
<tr>
<td>2.</td>
<td>Basa Pirimidin</td>
<td>Citosin, Timin</td>
<td>Citosin, Urasil</td>
</tr>
<tr>
<td>3.</td>
<td>Gula Pentosa</td>
<td>D-Ribosa</td>
<td>2-Deoki-D Ribosa</td>
</tr>
<tr>
<td>4.</td>
<td>Ik. Phospodiester</td>
<td>Ada</td>
<td>Ada</td>
</tr>
<tr>
<td>5.</td>
<td>Ik. Hidrogen</td>
<td>Ada</td>
<td>Tidak</td>
</tr>
<tr>
<td>7.</td>
<td>Struktur</td>
<td>Double straind</td>
<td>Singgle Strand</td>
</tr>
<tr>
<td>8.</td>
<td>Macam</td>
<td>DNA kromosom ada di dalam inti sel</td>
<td>mRNA, disintesis di dalam inti sel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DNA mitokondria ada di dalam mitokondria</td>
<td>tRNA ada di dalam sitoplasma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>rRNA penyusun Ribosom, ada pada permukaan membran RE kasar</td>
</tr>
</tbody>
</table>

Ketiga macam RNA tersebut adalah mRNA, rRNA, dan tRNA membawa antikodon yang berpasangan dengan kodon yang ada pada mRNA, serta fungsi tRNA untuk mentransfer asam amino yang ada di sitoplasma ke mRNA yang terdapat pada Ribosom. Bagaimanakah bentuk tRNA, dimanakah letak kodonnya, dan pada bagian manakah asam amino dibawanya dapat anda lihat pada Gambar 3.15.
Gambar 3.15. Struktur tRNA dengan antikodon, serta bagian akhir dari rangkaian nukleotida terdapat CCA (Cytosin, Cytosin, Adenin) sebagai tempat perlekatkan asam amino yang ditransfer ke mRNA (Coady 2010)
Gambar 3.16. Proses sintesis protein yang dikode oleh gen PAH (Hartl & Jones 2001)

Latihan

1) Sebutkan komponen penyusun RNA
2) Jelaskan perbedaan struktur RNA dengan DNA
3) Ada tiga macam RNA, sebutkan macam-macanya, serta fungsi dari masing-masing.
4) RNA adalah rangkaian dari ribonukleotida, jelaskan bagaimana terjadinya rangkaian tersebut.

Petunjuk Jawaban Latihan

1) Anda dapat memperhatikan tentang RNA
2) Anda dapat memperhatikan tentang struktur DNA dan RNA
3) Anda dapat memperhatikan macam-macam RNA
4) Anda dapat memperhatikan tentang terangkainya mononukleotida menjadi polinukleotida

Ringkasan

Ribonucleic Acid (RNA) adalah salah satu dari asam nukleat, yang merupakan polimer dari ribonukleotida. Setiap satu molekul ribonukleotida tersusun dari satu basa nitrogen, satu gula pentosa (ribosa) dan satu gugus phosphat. Basa nitrogen yang menyusun RNA adalah Adenin (A), Guanin (G), Citosin (C) dan Urasil (U). Ribonukleotida satu dengan ribonukleotida yang lain dihubungkan oleh ikatan phospodiester. Ikatan phospodiester terbentuk antara gugus OH pada atom C3 gula Ribosa dari ribonukleotida satu dengan gugus phosphat pada atom C5 pada gula Ribosa dari ribonukleotida yang lain. RNA tersusun single strand, ada 3 macam yaitu mRNA yang berada di dalam inti sel, kemudian dikeluarkan melalui membran inti dan bergabung pada ribosom, tRNA yang berada di dalam sitoplasma yang fungsinya mentransfer asam amino yang berasal dari sitoplasma ke mRNA yang ada pada ribosom dan rRNA sebagai penyusun ribosom. tRNA mambawa antikodon, yang komplementer dengan kodon yang ada pada mRNA, dan pada bagian ujungnya yang membawa asam amino dari sitoplasma yang akan dibawa ke mRNA.

Tes 2

Jawablah Pertanyaan Pada Kolom Yang Telah Tersedia

<table>
<thead>
<tr>
<th>No.</th>
<th>Pertanyaan</th>
<th>Jawab</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sebutkan Basa nitrogen yang hanya terdapat pada RNA</td>
<td>.........................</td>
</tr>
<tr>
<td>2.</td>
<td>Sebutkan gula pentosa penyusun RNA</td>
<td>.........................</td>
</tr>
<tr>
<td>3.</td>
<td>Jenis RNA yang diteraslasikan adalah...</td>
<td>.........................</td>
</tr>
<tr>
<td>No.</td>
<td>Pertanyaan</td>
<td>Jawaban</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>4.</td>
<td>Jenis RNA yang menyusun ribosom adalah...</td>
<td>..</td>
</tr>
<tr>
<td>5.</td>
<td>Jenis RNA yang terdapat di sitoplasma, dan fungsinya mentransfer asam amino adalah...</td>
<td>..</td>
</tr>
<tr>
<td>6.</td>
<td>Struktur RNA berbeda dengan DNA, struktur RNA adalah...</td>
<td>..</td>
</tr>
<tr>
<td>7.</td>
<td>Sebutkan 2 macam ikatan yang terdapat pada RNA</td>
<td>..</td>
</tr>
</tbody>
</table>
Kunci Jawaban Tes

Topik 1
1. Nukleosom
2. Kromatin
3. Timin
4. Adenin, Guanin, Cytosin
5. 2-D-deoksiribonukleat
6. Ikatan hidrogen
7. DNA kromosom, DNA mitokondria
8. Plasmid
9. Polinukleotida
10. Ikatan phosphodiester

Topik 2
1. Gula Ribosa
2. mRNA
3. rRNA
4. tRNA
5. Singgle strand
6. Ikatan phosphodiester, ikatan N-glikosidik
Daftar Pustaka

BAB IV
PROTEIN

Dr. Sri Darmawati, M.Si

Dalam bab ini Anda akan mempelajari protein yang merupakan salah satu dari empat makromolekul penyusun kehidupan yaitu protein, asam nukleat, lemak dan karbohidrat. Tugas Anda sebagai Ahli Teknologi Laboratorium Medik banyak berhubungan dengan protein, baik protein dalam bentuk enzym, protein dalam bentuk hormon, protein dalam urin, protein dalam feses, protein dalam darah.

Protein yang dihasilkan oleh bakteri antara lain enzym katalase, oksidase, koagulase dan tryptophanase yang digunakan untuk identifikasi bakteri. Oleh karena itu sebagai Ahli TLM sudah seharusnya memahami apa itu protein, siapa penyusunnya, bagaimana sifatnya. Protein ini merupakan penyusun komponen tubuh maupun organisme lainnya seperti bakteri, parasit, virus, dan organisme lainnya.

Setelah mempelajari bab ini, Anda diharapkan dapat menjelaskan tentang apa itu protein, siapa penyusunnya, bagaimana sifatnya, dapat dijumpai di mana saja, apa fungsinya bagi kehidupan baik pada organisme multiseluler seperti manusia, uniseluler seperti protozoa maupun bakteri, bahkan pada organisme non seluler seperti virus.

Sebelum mempelajari bab ini, sebaiknya sudah memahami tentang penggolongan makhluk hidup di dunia, struktur ultra sel eukaryot, struktur ultra sel prokaryot, serta akan lebih baik lagi apabila telah memahami metabolisme di dalam tubuh kita sebagai manusia.

Uraian dari bab ini terdiri dari 2 topik yaitu:
1. Protein
2. Pencernaan protein pada manusia
Topik 1
Protein

Dalam kehidupan sehari-hari, protein dapat kita jumpai di dalam tahu, tempe, kacang-kacangan, buah-buahan (misal pisang, durian, apokat), beras, jagung yang sering kita kenal sebagai protein nabati karena berasal dari tumbuh-tumbuhan. Selain itu kita juga mengenal protein hewani yaitu protein yang berasal dari hewan seperti ikan laut, ikan air tawar, daging (daging ayam, kerbau, kambing, sapi, kelinci dan hewan yang lain, baik hewan berkaki empat maupun berkaki dua) dan juga yang berasal dari produk hewan seperti susu, telur, keju.

Protein penting untuk Anda pelajari sebagai Ahli TLM, karena protein akan dijumpai pada semua bagian dari bahan pemeriksaan laboratorium, seperti pemeriksaan yang menggunakan serum untuk pemeriksaan antibodi maupun untuk pemeriksaan antigen, darah untuk pemeriksaan hemoglobin, pemeriksaan HIV, DB, jaringan untuk pemeriksaan cancer dan masih banyak lagi. Coba cari bahan-bahan untuk pemeriksaan laboratorium yang mengandung protein, dimana Anda bekerja.

Gambar 4.1. Kacang-kacangan Sumber Protein Nabati
(wikimedia.org; http://kesehatantubuh-tips.blogspot.com/2017/03)

Gambar 4.2. Kacang Merah dan Almon Sumber Protein Nabati
Protein di dalam tubuh manusia maupun hewan memegang peranan yang penting. Protein berperan sebagai komponen penyusun struktur sel (protein trans membran, Gambar 4.3). Protein juga berfungsi sebagai antibodi, protein hemoglobin, protein myoglobin, sebagai hormon, protein sebagai enzim. Protein juga sebagai bahan baku energi, contohnya ketika tidak makan nasi seperti kebiasaan orang Jawa, tetapi Anda makan steak yang bahannya daging maka Anda sudah tidak terasa lapar.

Enzim adalah satu protein yang berperan sebagai biokatalisator dalam reaksi kimia yang berlangsung di dalam tubuh manusia maupun di dalam organisme yang lain seperti hewan, tumbuhan, mikroorganisme seperti bakteri, dan jamur. Enzym β-Galaktosidase yang dimiliki oleh bakteri yang memfermentasikan laktosa seperti Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae. Enzim β-Galaktosidase mampu...
menghidrolisa laktosa sebagai disakarida menjadi dua monosakarida yaitu glukosa dan galaktosa (Gambar 4.4). Contohnya koloni *Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae* pada media Mac-Conkey (MC) warnya merah jambu, karena menghasilkan Enzym β-Galaktosidase, sehingga mampu menghidrolisa laktosa yang terdapat pada media MC menjadi glukosa dan galaktosa, kemudian glukosa difermentasi hasilnya asam, pada suasana asam indikator neutral red pada MC berwarna merah jambu, sehingga koloni bakteri tersebut berwarna merah jambu.

Gambar 4.4. Hidrolisis laktosa oleh enzym β-Galaktosidase (Coady 2010)

Protein basal dari kata protos atau proteos yang berarti utama. Protein merupakan salah satu dari 4 makromolekul komponen utama penyusun kehidupan di dunia, baik manusia, hewan, tumbuhan serta mikroorganisme seperti bakteri, jamur, virus dan parasit. Protein merupakan polimer dari asam-asam amino di mana asam amino satu dengan asam amino lain dihubungkan dengan suatu ikatan yang disebut sebagai ikatan peptida.

Biologi Sel dan Molekuler

(Gambar 4.5), dan akan terbentuk adanya N terminal atau ujung N (NH₂) disalah satu ujung dan C terminal atau ujung C (COOH) di ujung yang lain, serta dibebaskannya molekul H₂O (air).

1. Asam amino
Asam amino tersusun dari unsur karbon (C), hidrogen (H), oksigen (O), nitrogen (N) dan sebagian asam amino dengan unsur sulfur (S). Asam amino memiliki gugus amino (-NH₂) atau dalam bentuk NH₃⁺ dan gugus karboksil (-COOH) atau dalam bentuk (-COO⁻).

Rumus umum asam amino dapat dilihat pada Gambar 4.5.

Gambar 4.5. Struktur Asam amino secara umum (R adalah rantai samping)
R adalah rantai samping yang paling sederhana, berisi unsur H yang dimiliki asam amino glysin seperti pada Gambar 4.6.

![Gambar 4.6. Glysin rantai sampingnya berisi unsur H](image)

Asam amino mempunyai kemampuan untuk memutar bidang cahaya terpolarisasi, oleh karena itu asam amino mempunyai 2 macam konfigurasi yaitu D dan L (Gambar 4.7). Asam amino mempunyai konfigurasi L apabila gugus –NH₂ terdapat di sebelah kiri atom karbon alpha, dan konfigurasi D apabila gugus - NH₂ terdapat di sebelah kanan atom karbon alpha, tetapi asam-asam amino yang terdapat pada protein dalam tubuh manusia pada umumnya mempunyai konfigurasi L. Asam amino dengan konfigurasi D dapat dijumpai pada mikroorganisme misalnya pada asam glutamate yang terdapat pada Bacillus anthracis.

![Gambar 4.7. Konfigurasi L dan D dari Asam amino (Coady 2010)](image)

2. **Macam-macam asam amino**

Protein tersusun dari 20 macam asam amino standar, yang dapat dikelompokkan menjadi 2 berdasarkan sifatnya terhadap air, yaitu asam amino bersifat 1) **Hidrofilk** (suka dengan air), terdiri dari 10 macam asam amino terdiri dari 2 macam asam amino bersifat asam dan bermuatan negatif, 3 macam asam amino bersifat basa dan bermuatan positif, dan 5 macam asam amino bersifat netral dan bermuatan netral pula. 2) **Bersifat**
Hidrofobik (takut terhadap air), terdiri dari 10 macam asam amino dan semuanya bersifat netral.

Berdasarkan muatan listrik dan keasaman dari asam amino maka dapat dikelompokkan menjadi asam amino bermuatan negatif (bersifat asam) dapat dilihat pada Gambar 4.7, asam amino bermuatan positif (bersifat basa), dapat dilihat pada Gambar 4.8, asam amino bersifat netral (bersifat netral) dapat dilihat pada Gambar 4.9 dan 4.10. Asam amino yang bersifat netral, yaitu asam amino yang mengandung 1 gugus amino (-NH2) dan 1 gugus karboksil (-COOH) dalam molekulnya.

Asam amino yang bersifat asam, yaitu asam amino yang mengandung 2 gugus karboksil dan satu gugus amino. Asam amino yang bersifat basa, yaitu asam amino yang mengandung 2 gugus amino (-NH2) dan 1 gugus karboksil (-COOH).

Gambar 4.7. Asam amino bersifat Asam dan bermuatan negatif serta bersifat Hidrofillik (Coady 2010)

Berdasarkan kemampuan tubuh untuk mensintesis asam amino, maka dikelompokkan menjadi dua pula, yaitu asam amino yang dapat disintesa di dalam tubuh yang disebut asam amino non esensial dan asam amino yang tidak dapat disintesa di dalam tubuh yang dapat diperoleh dari makanan baik dari hewan maupun dari tumbuhan yang disebut asam amino esensial. Perhatikan Tabel 4.1.

Berdasarkan struktur gugus -R (rantai samping), asam amino dapat dikelompokkan menjadi 7 yaitu:

1. Asam amino dengan rantai samping yang merupakan rantai karbon alifatik (Glisin, Alanin, Valin, Leusin, Isoleusin)
2. Asam amino dengan rantai samping yang mengandung gugus hidroksil (Serin dan Treonin)
3. Asam amino dengan rantai samping yang mengandung atom belerang (Sistein dan Metionin)
4. Asam amino dengan rantai samping yang mengandung asam atau amidanya (Asam aspartat, Asparagin, Asam glutamate dan Glutamin)
5. Asam amino dengan rantai samping yang mengandung gugus basa (Arginin, Lisin, Histidin)
6. Asam amino dengan rantai samping yang mengandung cincin aromatic (Fenil alanin, Tirosin dan Triptofan)
7. Membentuk ikatan dengan atom N pada gugus amino (Prolin)

<table>
<thead>
<tr>
<th>Nama asam amino</th>
<th>Simbul</th>
<th>Esensial/ Non Esensial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glisin</td>
<td>Gly</td>
<td>Non Esensial</td>
</tr>
<tr>
<td>Alanin</td>
<td>Ala</td>
<td>Non Esensial</td>
</tr>
<tr>
<td>Valin</td>
<td>Val</td>
<td>Esensial</td>
</tr>
<tr>
<td>Leusin</td>
<td>Leu</td>
<td>Esensial</td>
</tr>
<tr>
<td>Isoleusin</td>
<td>Ile</td>
<td>Esensial</td>
</tr>
<tr>
<td>Kelompok (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serin</td>
<td>Ser</td>
<td>Non Esensial</td>
</tr>
<tr>
<td>Treonin</td>
<td>Thr</td>
<td>Esensial</td>
</tr>
<tr>
<td>Kelompok (3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ada beberapa asam amino yang tidak terdapat di dalam protein. Asam amino tersebut merupakan hasil antara dalam proses metabolisme atau merupakan pembentuk hormon. Asam-asam amino tersebut adalah: ornithin yaitu zat antara dalam biosintesa urea, homosistein yaitu zat antara dalam biosintesis metionin, homoserin, yaitu zat antara dalam metabolisme treonin, aspartat dan metionin, sitrulin yaitu zat antara dalam biosintesa urea, 3,5-diodotirosin yaitu sebagai pembentuk hormone tyroid, 3,4-dihidroksi fenilalanin yaitu sebagai pembentuk melanin.

3. Derivat Asam amino
Untuk membentuk suatu protein tertentu, beberapa asam amino mengalami modifikasi untuk memproduksi suatu senyawa dengan aktivitas yang lain. Beberapa asam amino yang mengalami modifikasi yaitu:
 a. Glutamat menjadi gamma-Aminobutyrat yang terdapat dalam otak mammalian yang mempunyai aktivitas sebagai neurotransmitter.
 b. Histidin menjadi histamine yang mengontrol kontraksi pembuluh darah.
c. Tyrosin menjadi epinephrine (adrenalin) adalah hormone yang membantu regulasi metabolisme pada mammalian. Selain itu tyrosin juga sebagai sebagai precursor hormon tyroksin yang diproduksi oleh kelenjar tyroid.

Latihan

1) Jelaskan pengertian protein
2) Jelaskan nama lain dari protein dan jelaskan pula alasannya.
3) Sebutkan unsur-unsur kimia yang menyusun asam amino
4) Sebutkan ciri-ciri molekul asam amino
5) Jelaskan apa yang dimaksud asam amino esensial dan asam amino nonesensial.
6) Bagaimana perbedaan struktur kimia antara asam amino yang bersifat asam, basa dan netral.
7) Sebutkan Asam amino yang rumus molekulnya paling sederhana
8) Sebutkan dua macam asam amino yang mengandung gugus S.
9) Jelaskan terbentuknya ikatan peptida antara dua asam amino.
10) Sebutkan 3 komponen tubuh yang tersusun dari protein

Petunjuk Jawaban Latihan

1) Anda dapat memperhatikan penjelasan tentang protein
2) Anda dapat memperhatikan penjelasan tentang protein
3) Anda dapat memperhatikan penjelasan tentang asam amino
4) Anda dapat memperhatikan penjelasan tentang asam amino
5) Anda dapat memperhatikan penjelasan tentang penggolongan asam amino
6) Anda dapat memperhatikan penjelasan tentang penggolongan asam amino
7) Anda dapat memperhatikan penjelasan tentang asam amino
8) Anda dapat memperhatikan penjelasan tentang penggolongan asam amino
9) Anda dapat memperhatikan penjelasan tentang terbentuknya ikatan peptida
10) Anda dapat memperhatikan penjelasan tentang fungsi protein bagi tubuh.

Ringkasan

Protein sebagai salah satu makromolekul yang dibutuhkan oleh organisme termasuk dibutuhkan oleh manusia, sebagai enzym, hormon, protein transmembran, antibodi, hemoglobin, myoglobin dsb. **Protein** merupakan polimer dari asam amino. Asam amino satu dengan asam amino yang lainnya dihubungkan oleh ikatan peptida. Ikatan peptida terbentuk antara gugus amino dari satu asam amino dengan gugus karboksil dari asam amino yang lain dengan dihasilkan molekul H₂O sebagai sampingannya.

Apabila dua asam amino dihubungkan oleh satu ikatan peptida disebut dipeptida, jika tiga asam amino dihubungkan dengan 2 ikatan peptida disebut tripeptida, jika...
banyak asam amino dihubungkan oleh banyak ikatan peptida disebut polipeptida. Rangkaian asam amino dengan ikatan peptida akan menghasilkan dua ujung, yang pertama ujung N yang sering disebut N terminal, dan ujung yang satunya adalah ujung C yang sering disebut C terminal.

Protein tersusun dari banyak asam amino yang dihubungkan pula oleh banyak ikatan peptida, maka protein disebut pula dengan istilah polipeptida. Ada 20 macam asam amino standar yang menyusun protein yang dapat dikelompokkan menjadi asam amino esensial yang tidak dapat disintesis di dalam tubuh sehingga harus diperoleh dari makanan atau minuman dan non esensial yaitu asam amino yang dapat disintesis di dalam tubuh.

Asam amino dilihat dari struktur kimianya ada asam amino yang bersifat asam yaitu asam amino yang bermuatan negatif dan mengandung satu gugus amina dan dua gugus karboksil, bersifat basa yaitu asam amino yang bermuatan positif dan mengandung dua gugus amina dan satu gugus karboksil, dan yang bersifat netral yaitu asam amino yang bermuatan netral karena mengandung satu gugus amina dan satu gugus karboksil.

Selain 20 macam asam amino standar, terdapat asam amino yang merupakan hasil antara dalam proses metabolisme atau merupakan pembentuk hormon antara lain: ornithin, homoserin, homosistein, sitrulin, 3,5-diiodotirosin, dan 3,4-dihidroksi fenilalanin.

Tes 1

Pilihlah satu jawaban yang paling tepat

1) Protein adalah....
 A. Rangkaian monosakarida
 B. Rangkaian asam lemak
 C. Rangkaian asam amino
 D. Rangkaian nukleotida

2) Molekul asam amino memiliki ciri
 A. Adanya gugus karboksil dan amina
 B. Adanya gugus metyl dan hidroksil
 C. Adanya gugus hidroksil dan gugus phospat
 D. Adanya gugus hidroksil dan amina

3) Ikatan yang menghubungkan asam amino satu dengan asam amino yang lainnya adalah ikatan....
 A. Phospodiester
 B. Glikosidik
 C. Hidrogen
 D. Peptida
Biologi Sel dan Molekuler

4) Asam amino yang paling sederhana adalah
 A. Leusin
 B. Glysin
 C. Isoleusin
 D. Tyrosin

5) Dua macam asam amino yang mengandung gugus S adalah
 A. Cystein dan treonin
 B. Cystein dan serin
 C. Cystein dan histidin
 D. Cystein dan metionin

6) Asam amino yang bersifat basa adalah tersebut di bawah ini, kecuali....
 A. Aspartat
 B. Hystidin
 C. Lysin
 D. Arginin

7) Dua sam amino yang dihubungkan oleh satu ikatan peptida disebut...
 A. Monopeptida
 B. Dipeptida
 C. Tripeptida
 D. Oligopeptida

8) Tersebut di bawah ini tersusun oleh protein, kecuali...
 A. Ptilalin
 B. Insulin
 C. Myoglobin
 D. Glykogen
Topik 2
Pencernaan Protein Pada Tubuh Manusia

Kandungan protein di dalam tubuh yang ideal adalah konstan. Untuk menghindari kekurangan protein, maka setiap hari Anda harus mengkonsumsi minimum 30 gram protein. Di negara-negara industry, kandungan protein dalam makanan jauh lebih tinggi (100 gram). Berapakah konsumsi protein kita masyarakat Indonesia dalam sehari?

Protein yang hilang dari tubuh kita melalui intestinum dan ginjal, yaitu melalui urin/kencing. Pada Orang dewasa, setiap hari terjadi proteolisis protein menjadi asam amino rata-rata 300-400 gram setiap hari yang diimbangi dengan biosintesis protein. Beberapa protein short-lived (berumur singkat) seperti enzim pada metabolisme antara, dan ada protein yang long-lived (umurnya panjang) seperti histon (protein yang mengemas DNA menjadi nukleolus), hemoglobin, cytoskeleton.

1. Degradasi asam amino pada mamalia, termasuk pada manusia

masuk bersama makanan ataupun minuman akan mati, karena pH lambung yang sangat asam.

Degradasi protein di dalam tubuh Anda akan terjadi dalam tahapan berikut:

1. Masuknya makanan dalam bentuk protein ke dalam lambung akan menstimulasi hormon gastrin.
2. Hormon gastrin menstimuli pengeluaran HCl lambung dan pepsinogen yang selanjutnya akan diaktifkan menjadi pepsin.
4. Asam lambung yang ikut masuk ke usus halus menstimuli pengeluaran sekretin.
5. Sekretin menstimuli pengeluaran bikarbonat untuk menetralkan asam lambung suasana pH netral menstimulasi hormon kolesistokinin.
7. Ketiga ensim tsb setelah masuk ke usus halus menjadi aktif sebagai tripsin, kimotripsin dan karboksipeptidase.
8. Tripsin akan menghidrolis ikatan peptida pada asam amino yang mempunyai gugus karbonil (Lys, Arg)
9. Kimotripsin menghidrolis ikatan peptida pada C terminal dari residu Tyr, Phe dan Trp
10. Karboksipeptidase mengkatalisis pelepasan residu karboksil terminal secara berurutan.
11. Usus halus juga mengeluarkan aminopeptidase yang menghidrolis residu amino terminal secara berurutan pada oligopeptide

Latihan

1) Jelaskan pencernaan protein di dalam mulut, yang hasilnya tidak manis seperti apabila Anda makan nasi.
2) Jelaskan pencernaan protein yang terjadi di dalam lambung.
3) Sebutkan macam-macam enzym yang berperan dalam pencernaan protein di dalam usus halus.
4) Sebutkan fungsi enzym-enzym yang berperan dalam pencernaan protein di usus halus.

Petunjuk Jawaban Latihan

1) Anda dapat memperhatikan tentang pencernaan protein di dalam mulut.
2) Anda dapat memperhatikan tentang pencernaan protein di dalam lambung.
3) Anda dapat memperhatikan pencernaan protein di dalam usus halus.
4) Anda dapat memperhatikan pencernaan protein di dalam usus halus.

Ringkasan

Hormon yang berperan dalam pencernaan protein di usus halus adalah Hormon gastrin yang menstimuli pengeluaran HCl lambung dan pepsinogen yang selanjutnya akan diaktifkan menjadi pepsin dan Kolesistokinin yang akan menstimulasi pengeluaran tripsinogen, kimotripsinogen dan Prokarboksipeptidase dari pankreas. Ketiga ensim tsb setelah masuk ke usus halus menjadi aktif sebagai tripsin, kimotripsin dan karboksipeptidase.
Tes 2

Jawablah pertanyaan pada kolom yang telah tersedia

<table>
<thead>
<tr>
<th>No.</th>
<th>Pertanyaan</th>
<th>Jawaban</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Apabila makan telur, yang terjadi di dalam mulut adalah pencernaan....</td>
<td>...</td>
</tr>
<tr>
<td>2.</td>
<td>Di dalam lambung ada enzym yang berperan dalam pencernaan protein, yaitu...</td>
<td>...</td>
</tr>
<tr>
<td>3.</td>
<td>Tiga macam asam amino yang mempunyai cincin aromatik adalah....</td>
<td>...</td>
</tr>
<tr>
<td>4.</td>
<td>Sekretin yang dikeluarkan usus halus akan menstimulasi keluarnya....yang fungsinya akan menetralkan asam lambung yang masuk ke dalam usus halus.</td>
<td>...</td>
</tr>
<tr>
<td>5.</td>
<td>Hormonyang dikeluarkan oleh usus halus akan menstimulasi pankreas untuk mengeluarkan tiga macam enzym ke dalam usus halus yaitu tripsinogen, kimotripsinogen dan Prokarboksipeptidase</td>
<td>...</td>
</tr>
<tr>
<td>6.</td>
<td>Tripsinogen setelah di usus halus akan aktif menjadi....</td>
<td>...</td>
</tr>
<tr>
<td>7.</td>
<td>Kimotripsinogen setelah di usus halus akan aktif menjadi....</td>
<td>...</td>
</tr>
<tr>
<td>8.</td>
<td>Prokarboksipeptidase setelah di usus halus akan aktif menjadi....</td>
<td>...</td>
</tr>
<tr>
<td>9.</td>
<td>Tripsin akan menghidrolisa ikatan peptida pada asam amino yang mempunyai gugus karbonil. Asam amino yang mempunyai gugus karbonil ada dua yaitu...</td>
<td>...</td>
</tr>
<tr>
<td>10.</td>
<td>Hormon yang menstimulasi pengeluaran HCl</td>
<td>...</td>
</tr>
<tr>
<td>lambung adalah</td>
<td>..</td>
<td></td>
</tr>
</tbody>
</table>

Kunci Jawaban Tes

Tes 1
1. C
2. A
3. D
4. B
5. D
6. A
7. B
8. D
9.

Tes 2
1. Mekanik
2. Pepsin
3. Phenylalanin, tryptophan, tyrosin
4. Bikarbonat
5. Kolesistokinin
6. Trypsin
7. Kimotripsin
8. Karboksipeptidase
9. Lysin dan argynin
10. Gastrin
Daftar Pustaka

http://kesehatantubuh-tips.blogspot.com/2017/03

http://biologimediacentre.com/sistem-pencernaan)
BAB V
SINTESIS PROTEIN

Dr. Sri Darmawati, M.Si

Dalam bab ini Anda akan mempelajari mekanisme sintesis protein pada tubuh kita sebagai manusia (wakil dari sintesis protein pada sel eukaryot) dan pada bakteri (wakil dari sintesis protein pada sel prokaryot).

Tugas Anda sebagai Ahli Teknologi Laboratorium Medik (ATLM) mengharuskan Anda berkecimpung dengan manusia sebagai makhluk hidup, maka sudah seharusnya untuk memahami bagaimana sintesis protein yang terjadi pada manusia. Selain itu, Anda juga perlu mempelajari sintesis protein pada bakteri, karena bakteri merupakan salah satu mikroorganisme yang dapat menginfeksi manusia.

Setelah mempelajari bab ini, Anda diharapkan dapat menjelaskan tentang mekanisme sintesis protein pada sel eukaryot, yang meliputi transkripsi, (pengertian, mekanisme transkripsi, maupun tempatnya serta komponen-komponen yang dibutuhkan). Anda juga diharapkan dapat menjelaskan tentang translasi (pengertian translasi, tempat translasi, komponen yang dibutuhkan untuk translasi), serta penyempurnaan hasil translasi dan penyimpanan protein yang sudah sempurna. Selain itu, Anda juga dapat menjelaskan mekanisme sintesis protein pada sel prokaryot yang contohnya pada bakteri.

Uraian dari bab ini terdiri dari 2 topik, yaitu:
1. Mekanisme sintesis protein pada sel eukaryot
2. Mekanisme sintesis protein pada sel prokaryot

Selamat Belajar
Topik 1
Mekanisme Sintesis Protein Pada Sel Eukaryot

Materi yang akan Anda pelajari berikut ini adalah tentang mekanisme sintesis protein pada sel eukaryote. Seperti Anda sudah ketahui, sintesis protein memerlukan DNA. DNA tersusun dari banyak gen dan setiap gen akan menghasilkan protein. Gen yang berbeda akan menghasilkan protein yang berbeda pula. Protein A akan dihasilkan oleh gen A, dan protein B akan dihasilkan oleh gen B.

1. **Sintesis protein pada sel eukaryot**

Masih ingatkah Anda struktur ultra sel eukaryot, di mana di dalamnya mengandung macam-macam organella yang antara lain berperan dalam proses sintesis protein? Gen merupakan urutan nukleotida tertentu yang terdapat pada DNA, dan DNA berada di dalam inti sel. Pada sel eukaryot satu gen terdiri dari satu promoter yang disebut dengan **monosistronik**. Ini berbeda dengan bakteri, di mana banyak gen dengan hanya satu promoter (**polisistronik**).

Proses sintesis protein pada sel eukaryot contohnya dapat kita lihat pada diri kita sebagai manusia melalui beberapa tahapan yaitu: 1) transkripsi gen kelas II akan menghasilkan mRNA yang terjadi di dalam inti sel. Proses transkripsi terjadi dalam 2 tahap: tahap pertama dihasilkan mRNA yang belum masak, ukurannya panjang. Kemudian dilanjutkan ke tahap kedua transkripsi akhir yang menghasilkan mRNA masak yang ukurannya lebih pendek. mRNA masak hasil transkripsi akhir dikeluarkan dari dalam inti sel melalui pori-pori membran inti sel menuju pada ribosom. Anda perhatikan gambar 5.2.
Ribosom berada pada permukaan membran retikulum endoplasma kasar, dan ribosom penyusunnya adalah rRNA. Pada Ribosom terjadilah proses translasi yang membutuhkan tRNA, hasil dari translasi tersebut adalah protein, namun protein belum dapat berfungsi. Setelah proses translasi selesai akan menghasilkan protein yang belum dapat digunakan, karena hanya merupakan rangkaian asam amino belaka dan belum sempurna.

a. Transkripsi

Transkripsi adalah proses sintesis RNA dengan DNA sebagai cetakannya ditunjukkan pada Gambar 5.3A dan Gambar 5.3B. Apabila transkripsi terjadi pada gen kelas II maka berlangsung di dalam inti sel dan menghasilkan mRNA. Proses transkripsi tentu harus diawali dengan ketersediaan cetakan DNA. Cetakannya akan tersedia diawali dengan terjadinya denaturasi. Anda perlu ingat bahwa tidak semua gen pada DNA akan
mengalami denaturasi, hanya gen tertentu yang akan ditranskripsikan. Proses denaturasi dalam sel kita terjadi dengan adanya enzym Gyrase yang akan memotong ikatan hidrogen, sehingga DNA tersebut akan menjadi 2 strand yang terpisah, dan masing-masing strand akan menjadi cetakan.

Gambar 5.3A. Transkripsi Dengan DNA Sebagai Cetakannya (Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts 2008)

Proses transkripsi awal menghasilkan mRNA immatur, yang ukurannya panjang, karena semua bagian gen struktural (Intron dan Exon) ditranskripsikan. Sedangkan transkripsi akhir akan terjadi pemotongan pada mRNA immatur pada bagian yang diekspresikan oleh bagian Intron dari gen struktural, sehingga dihasilkanlah mRNA matur yang ukurannya lebih pendek (Gambar 5.4)
Gambar 5.4. Bagian-bagian dari Gen dan Transkripsi Pada Sel Eukaryot

🌟 : RNA polimerase
P : Promoter
I : Intron
E : Exon
T : Terminator

Proses transkripsi terjadi melalui 3 (tiga) tahapan, yaitu: 1) inisiasi transkripsi atau pengawalan, 2) elongasi transkripsi atau pemanjangan, 3) terminasi transkripsi atau pengakhiran. Inisiasi transkripsi adalah awal mulainya transkripsi, di mana protein regulator dan RNA polymerase mulai menempel pada promoter dari gen yang merupakan bagian dari DNA. Inisiasi transkripsi mulai dari ujung 5’ ke arah 3’. Proses inisiasi transkripsi dapat Anda lihat pada Gambar 5.4.

Pada proses transkripsi, selain dibutuhkan enzym RNA polimerase, juga dibutuhkan substrat dari enzym tersebut. Substratnya adalah ribonukleotida yaitu nukleotida yang komponen gula pentosanya adalah ribosa, yang biasanya sering diberi nama NTP (nukleotida trifosfat) yaitu nukleotida dengan tiga gugus fosfat.

Macam-macam NTP adalah (1) GTP (Guanosin trifosfat), (2) CTP (Citosin trifosfat), (3) UTP (....trifosfat), (4) ATP (Adenosin trifosfat). Enzym RNA polimerase yang menentukan kapan proses transkripsi dimulai dan kapan pula transkripsi harus berakhir.

Elongasi transkripsi: setelah inisiasi transkripsi selesai maka dilanjutkan dengan proses elongasi transkripsi. Setelah Enzym RNA polimerase bergerak, sampai gen struktural diikuti dengan menempelnya ribonukleotida bebas (gugus fosfat yang terletak pada atom C5 dari gula ribosa) pada gugus OH yang terletak pada atom C3 dari ribonukleotida pada molekul RNA yang sedang tumbuh (hasil dari inisiasi transkripsi).

Setelah RNA polimerase sampai pada urutan nukleotida tertentu yang disebut terminator maka proses penambahan ribonukleotida akan berhenti, yang disebut sebagai terminasi transkripsi. Transkripsi awal telah selesai yang menghasilkan mRNA immatur. Kemudian dilanjutkan dengan proses pemotongan mRNA immatur pada sekuens yang diekpresikan oleh bagian intron. Akhirnya mRNA menjadi lebih pendek, disebut sebagai mRNA matur. mRNA matur kemudian dikeluarkan dari dalam inti sel melalui pori-pori membran inti menuju pada ribosom yang terletak pada membran RE kasar.

b. Translasi

dan diedarkan pada setiap sel yang membutuhkan. Asam amino akhirnya sampailah pada sitoplasma yang merupakan bahan untuk sintesis protein.

Urutan nukleotida yang terdapat pada mRNA hanyalah kode, artinya bahwa setiap 3 basa pada mRNA mengkode satu asam amino yang disebut sebagai kodon. Jadi kodon adalah setiap tiga basa pada mRNA yang mengkode satu macam asam amino yang daftarnya dapat dilihat pada daftar treeplet kodon (Gambar 5.3).

Selain kodon dari asam amino dijumpai pula Star kodon AUG yang kebetulan mengkode asam amino metionin. Setiap sintesis protein diawali dengan asam amino metionin. Selain star kodon dijumpai pula 3 macam Stop kodon yaitu: UAA, UAG, UGA. Ketika enzym polimerase sudah sampai pada salah satu stop kodon tersebut, maka proses elongasi transkripsi akan berhenti.

Siapakah yang mampu untuk membaca kodon tersebut? Yang dapat membaca adalah tRNA yang membawa antikodon. Kodon dan antikodon saling berpasangan, pasangan U-A, G-C, atau sebaliknya A-U, C-G (Gambar 3B). Dalam hal ini, kodon ada pada mRNA dan antikodon ada pada tRNA (Gambar 5.4)

Gambar 5.5. Treeplet Kodon
(Hartl & Jones 2001)

Setelah Anda mempelajari tentang sintesis protein pada sel eukaryot, perhatikan contoh proses sintesis protein seperti pada gambar berikut.
Perhatikan gambar 5.6. Dapatkah Anda menjelaskan proses transkripsi dari gen *PAH* dan proses translasiannya, baik mekanisme maupun komponen yang dibutuhkan serta lokasi terjadinya setiap proses? Tuliskan jawaban Anda pada kotak di bawah ini, bila Anda mengalami kesulitan, Anda dapat mempelajari kembali uraian di atas.
Latihan

1) Jelaskan mekanisme sintesis protein secara umum
2) Jelaskan tahapan transkripsi pada sel eukaryot
3) Sebutkan komponen yang dibutuhkan dalam proses transkripsi
4) Jelaskan proses translasi pada sel eukaryot
5) Sebutkan komponen-komponen yang dibutuhkan dalam proses translasi.
6) Jelaskan perbedaan antara kodon dan antikodon
7) Jelaskan fungsi star kodon
8) Jelaskan fungsi stop kodon

Petunjuk jawaban latihan

Untuk menjawab pertanyaan pada latihan pada nomor:
1) Anda dapat memperhatikan tentang mekanisme sintesis protein
2) Anda dapat memperhatikan tentang transkripsi pada eukaryot
3) Anda dapat memperhatikan tentang transkripsi pada eukaryot khususnya komponen yang berperan
4) Anda dapat memperhatikan tentang translasi pada eukaryot
5) Anda dapat memperhatikan tentang translasi pada eukaryot khususnya komponen yang berperan
6) Anda dapat memperhatikan tentang proses translasi
7) Anda dapat memperhatikan daftar treeplate kodon
8) Anda dapat memperhatikan daftar treeplate kodon

Ringkasan

Proses sintesis protein pada sel eukaryot: diawali dengan transkripsi (proses sintesis mRNA dengan DNA sebagai cetakannya. DNA untuk menjadi cetakan harus menjadi dua strand yang terpisah, melalui proses denaturasi oleh enzim gyrase. Enzim gyrase akan memotong ikatan hidrogen sehingga kedua strand DNA dapat terpisah dan masing-masing akan menjadi cetakan.

Setelah DNA menjadi cetakan kemudian enzim RNA polimerase akan segera menempel pada bagian promoter dari gen yang dibantu oleh protein regulator yang disebut inisiasi transkripsi. Setelah itu terjadi elongasi transkripsi dengan ketersediaan NTP (ATP, UTP, GTP,CTP) sehingga terbentuklah mRNA immatur, kemudian terjadi pemotongan mRNA immatur tersebut menghasilkan mRNA matur. Proses transkripsi sampai menghasilkan mRNA matur terjadi di dalam inti sel. Kemudian mRNA matur dikirimkan ke luar intisal melalui pori-pori membran inti menuju ribosom yang terdapat pada permukaan membran RE kasar, selanjutnya terjadi translasi.

Translasi adalah proses sintesis protein dengan mRNA sebagai cetakannya. Setiap 3 basa pada mRNA yang mengkode satu macam asam amino adalah kodon, dan yang

Test 1

Jawablah pertanyaan pada kolom yang telah tersedia

<table>
<thead>
<tr>
<th>No.</th>
<th>Pertanyaan</th>
<th>Jawaban</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Proses sintesis mRNA dengan DNA sebagai cetakannya adalah....</td>
<td>..</td>
</tr>
<tr>
<td>2.</td>
<td>Proses sintesis protein dengan mRNA sebagai cetakannya adalah...</td>
<td>..</td>
</tr>
<tr>
<td>3.</td>
<td>Proses sintesis mRNA terjadi di dalam...</td>
<td>..</td>
</tr>
<tr>
<td>4.</td>
<td>mRNA immatur dihasilkan pada proses....</td>
<td>..</td>
</tr>
<tr>
<td>5.</td>
<td>Proses translasi terjadi di dalam....</td>
<td>..</td>
</tr>
<tr>
<td>6.</td>
<td>Enzym yang berperan dalam menghidrolisa ikatan hidrogen pada DNA sehingga dapat menjadi cetakan adalah...</td>
<td>..</td>
</tr>
<tr>
<td>7.</td>
<td>Setiap tiga basa pada mRNA yang mengkode satu macam asam amino adalah...</td>
<td>..</td>
</tr>
<tr>
<td>8.</td>
<td>Yang berperan dalam mentransfer asam amino dari sitoplasma ke mRNA yang ada pada ribosom adalah...</td>
<td>..</td>
</tr>
<tr>
<td>9.</td>
<td>Proses penyempurnaan hasil sintesis protein terjadi di dalam....</td>
<td>..</td>
</tr>
<tr>
<td>10.</td>
<td>Pasangan kodon AUG adalah....yang terdapat pada tRNA</td>
<td>..</td>
</tr>
</tbody>
</table>
Topik 2
Sintesis Protein Pada Sel Prokaryot

Gambar 5.7. Mekanisme Sintesis Protein Sel Bakteri
(Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts 2008)

Pada sel prokaryot juga dijumpai adanya 3 kelompok gen yaitu: 1) gen yang mengkode protein, 2) gen yang mengkode rRNA dan 3) gen yang mengkode tRNA. Selain itu perbedaan struktur gen pada sel eukaryot dengan prokaryot, pada eukaryot satu gen,
satu promoter, satu protein. Pada prokaryot, satu promoter, banyak gen, dan banyak macam proteinnya.

1. **Transkripsi**

Masih ingatkah Anda proses transkripsi yang terjadi pada sel eukaryot? Transkripsi pada sel eukaryote terjadi di dalam inti sel. Proses transkripsi pada bakteri terjadi di dalam sitoplasma, karena prokaryot tidak memiki inti sejati, kromosomnya berada pada sitoplasma yang tampak lebih kental dibanding sitoplasma di sekitarnya. Transkripsi terjadi melalui tiga tahapan, yaitu tahap inisiasi transkripsi, elongasi transkripsi dan terminasi transkripsi.

Demikian pula RNA polimerase pada bakteri juga berbeda dengan RNA polimerase pada eukaryot. RNA polimerase pada bakteri sangat kompleks, terdiri dari empat subunit. Anda dapat mempelajari contoh RNA polimerase pada *Escherichia coli*. Empat subunit protein tersebut adalah α, β, β’, σ/sigma dan α tampak 2 kopi. Keempat subunit tersebut saling berinteraksi sehingga membentuk enzym yang aktif, tetapi sub unit σ/sigma tidak berikatan kuat dibandingkan dengan ketiga subunit yang lainnya. Ketiga subunit α, β, β’ yang berikatan erat tersebut disebut sebagai **core enzym**.

Inisiasi transkripsi ini menentukan laju transkripsi, namun kadangkala inisiasi transkripsi ini dihambat dengan kehadirannya antibiotik rifampisin. Jadi Rifampisin dapat menghambat sintesis protein pada tingkat inisiasi transkripsi, namun rifampisin tidak menghambat proses elongasi transkripsi.

Proses **Elongasi transkripsi**: Setelah RNA polimerase mencapai gen struktural mulailah terjadi penambahan nukleotida pada mRNA yang tumbuh dengan DNA sebagai cetakannya, pada proses ini dapat dihambat oleh antibiotik **streptolidigin**.

Proses **Terminasi transkripsi**: RNA polimerase setelah sampai pada terminator dari gen maka transkripsi akan berhenti. Namun bedanya dengan eukaryot, proses translasi akan terjadi setelah transkripsi selesai sempurna. Pada sel prokaryot terjadi proses yang berbeda, yaitu proses transkripsi belum selesai sudah, namun proses translasi dimulai pada ribosom.

Nah sekarang Anda perlu berpikir, bagaimana proses inisiasi transkripsi, elongasi dan terminasi transkripsi terjadi pada bakteri? Anda ketahui bahwa proses ini melibatkan DNA yang bentuknya supercoil dan double strand, RNA polimerase (**core enzym**), dan subunit σ/sigma, dan tentunya prekursor dari RNA (ATP, GTP, UTP, dan CTP).
Perhatikan urutannya sebagai berikut:
1. DNA double strand
2. Subunit σ/sigma akan mengenali sekuens pada DNA double strand, yang merupakan site inisiasi transkripsi dan kemudian akan menempel pada site tersebut. Site inisiasi tersebut adalah *promoter*.
3. Enzym RNA polimerase (*core enzym*), akan menempel pada bagian sekuens DNA yang ditempeli oleh Subunit σ/sigma tersebut.
4. Subunit σ/sigma akan melepaskan diri setelah RNA polimerase menempel pada bagian sekuens inisiasi, dan RNA polimerase (*core enzym*) berjalan untuk proses elongasi sampai terminasi.
5. DNA akan membuka ketika ada RNA polimerase, tetapi akan menutup kembali ketika RNA polimerase sudah bergerak meninggalkan. Strand DNA yang menjadi cetakan dan ditranskripsikan hanya satu strand saja.
7. RNA polimerase dan mRNA akan melepaskan diri dari DNA cetakan.

Setelah transkripsi selesai, maka dihasilkan mRNA, yang kemudian bergerak ke ribosom untuk melanjutkan proses translasi.

2. Translasi
Translasi terjadi pada ribosom (rangkaian rRNA) yang terdapat pada sitoplasma. Proses translasi terjadi dengan tiga tahapan, yaitu: 1) inisiasi translasi, 2) elongasi translasi dan, 3) terminasi translasi. Pada proses translasi selain melibatkan mRNA, rRNA yang menyusun ribosom juga dibutuhkan tRNA yang terletak pada sitoplasma dan berfungsi untuk mentransfer asam amino yang berada pada sitoplasma ditransfer ke mRNA.

LATIHAN

1) Jelaskan dogma sintesis protein yang terjadi pada bakteri.
2) Jelaskan proses transkripsi pada bakteri, dari inisiasi transkripsi sampai dengan terminasi transkripsi.
3) Sebutkan empat macam subunit protein penyusun RNA polimerase
4) Jelaskan proses translasi pada bakteri.

Petunjuk menjawab latihan

1) Anda dapat memperhatikan tentang dogma sintesis protein yang umum
2) Anda dapat memperhatikan tentang transkripsi pada bakteri
3) Anda dapat memperhatikan tentang enzyom RNA polimerase pada bakteri
4) Anda dapat memperhatikan tentang translasi pada bakteri.
RINGKASAN

TES 2
Jawablah pertanyaan berikut kolom jawaban yang tersedia

<table>
<thead>
<tr>
<th>No.</th>
<th>Pertanyaan</th>
<th>Jawaban</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Tempat proses transkripsi pada bakteri adalah......</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Kemudian disusul dengan menempelnya... yang merupakan gabungan dari 3 subunit protein dari RNA polimerase</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Prekursor RNA polimerase untuk proses elongasi transkripsi adalah...</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Elongasi transkripsi akan berhenti apabila RNA polimerase sampai pada daerah... dari gen.</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Proses translasi terjadi pada... yang terdapat di dalam sitoplasma</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Proses translasi melibatkan 3 macam RNA, sebutkan.</td>
<td></td>
</tr>
</tbody>
</table>
KUNCI JAWABAN TES

Tes 1
1. Transkripsi
2. Translasi
3. Inti sel
4. Transkripsi awal
5. Ribosom
6. Enzym gyrase
7. Kodon
8. tRNA
9. Badan Golgi
10. UAC

Tes 2
1. Sitoplasma
2. Faktor sigma
3. Core enzym
4. ATP, UTP, GTP dan CTP
5. Terminator
6. Ribosom
7. mRNA, rRNA dan tRNA
DAFTAR PUSTAKA

Molekular Biologi of The Cell,
J.M. Berrg, J. L. Tymoczko, L.S., Biochemistry Fifth edit., Johns Hopkins University School of
Medicine 0-7167-4738-3 Designed.
PENDAHULUAN

Studi Biologi Molekuler pada dasarnya berkaitan erat dengan analisis makromolekul. Analisis makromolekul dapat dilakukan berdasarkan atas reaksi kimia yang ditimbulkan oleh interaksinya dengan makromolekul/molekul lain, atau dengan mempelajari struktur fisiknya. Dalam bab ini, akan dibahas berbagai teknik molekuler yang telah digunakan untuk uji laboratorium dengan pendekatan diagnostik dan pemantauan penyakit.

Dengan mempelajari modul ini, Anda diharapkan memiliki kemampuan untuk:
1. Membandingkan jenis-jenis teknik dasar analisis biologi molekuler.
2. Mengidentifikasi bagian ruangan laboratorium dan peralatan laboratorium biologi molekuler.

Selanjutnya mari kita bersama-sama menyimak topik dari modul 6 berikut ini.

Selamat Belajar semoga dapat mencapai kompetensi yang diharapkan!
TOPIK 1
Jenis-jenis Teknik Dasar Analisis Molekuler

Teknik biomolekuler ditujukan untuk mempelajari asam nukleat, regulasi dan ekspresinya (produk) yaitu protein. Proses ini meliputi kajian genomik yaitu mengkaji asam nukleat dan kajian pasca genom yaitu mengkaji protein. Teknik paling awal dalam mengkaji genom adalah deteksi kromosom dengan cara melisis sel. Dengan cara ini dapat diketahui bahwa jumlah kromosom manusia adalah 46 buah atau 23 pasang.

Pada pembelajaran topik ini akan disajikan materi tentang Teknik Dasar Analisis Biologi Molekuler Untuk Asam Nukleat, Teknik Analisis Dasar Molekuler Untuk Protein. Di laboratorium, materi ini berkaitan dengan pekerjaan Anda sebagai ATLM terutama apabila Anda bertugas di laboratorium Biologi Molekuler dan sitogenetika yang banyak berhubungan dengan kegiatan penerapan teknik dasar analisis biomolekuler sesuai dengan permintaan klinisi untuk jenis pemeriksaan dan bahan pemeriksaan (spesimen) klinis tertentu.

1. Teknik Dasar Analisis Biologi Molekuler Untuk Asam Nukleat (DNA atau RNA)

Teknik dasar analisis biologi molekuler untuk DNA di antaranya dengan cara hibridisasi. Pada metode ini dibuat pelacak (probe) yang merupakan untaian asam nukleat yang kira-kira sesuai/ serasi dengan DNA yang akan dideteksi. Ketepatan metode ini rata-rata di bawah 80%. Teknologi paling akurat untuk mendeteksi asam nukleat adalah Polymerase Chain Reaction (PCR) yang memiliki ketepatan hingga 100%. Pada metode PCR suatu segmen asam nukleat diperbanyak (diamplifikasi) menggunakan panduan primer yaitu batasan sekuen basa nitrogen yang ada pada hulu dan hilir segmen yang dimaksud. Teknologi PCR selanjutnya akan dibahas secara rinci pada Bab 8 dari bahan ajar ini. Asam nukleat yang diperbanyak akan dengan mudah divisualisasi dengan elektroforesis. Teknik elektroforesis selanjutnya akan dibahas secara rinci pada Bab 9 bahan ajar ini yaitu tentang Teknik identifikasi asam nukleat dan protein. Sedangkan ketepatan deteksi sekuen nukleotida dapat dilakukan dengan metode sekuensing. Teknik sekuensing DNA tidak dibahas secara rinci pada bahan ajar ini. Ada beberapa jenis teknik dasar analisis biologi molekuler untuk asam nukleat, di antaranya:

a. Hibridisasi dengan Probe Asam Nukleat dalam Bentuk Larutan

Berdasarkan dasar pemikiran bahwa rangkaian potongan DNA sangat spesifik untuk produk akhirnya dan bahwa asam nukleat berinteraksi satu sama lain melalui hubungan pasangan basa, probe asam nukleat dapat diciptakan untuk mengidentifikasi potongan DNA tertentu dengan mensintesis protein “pemancing” dengan rangkaian yang merupakan komplementer terhadap potongan DNA yang dituju. Probe asam nukleat dengan rangkaian tertentu dapat digunakan untuk mengikat dan dengan demikian mengidentifikasi potongan komplementer DNA. Pendekatan yang disebut hibridisasi ini
adalah sebuah proses kunci dan merupakan dasar untuk beberapa teknik biologi molekuler. Tentu saja, semakin panjang probe, semakin besar kecenderungannya bahwa probe tersebut akan bersifat spesifik. Namun, secara umum, probe yang memiliki minimal 20 basa berturut-turut yang spesifik untuk potongan DNA tertentu telah terbukti sangat spesifik untuk potongan tersebut, dan pengikatan nonspesifik 20 + probe basal pada potongan DNA yang tidak berhubungan telah dinyatakan sangat tidak mungkin terjadi.

Langkah pertama dalam teknik hibridisasi adalah denaturasi cetakan DNA dengan suhu tinggi untuk memutus ikatan hidrogen di antara pasangan-pasangan basa komplemener. Panas menyebabkan pemisahan kedua untai DNA dengan memutus semua ikatan hidrogen yang menghubungkan kedua untai DNA; suhu yang diperlukan untuk pemusatan ini bergantung pada rangkaian DNA tertentu (misalnya, ikatan sitosin-guanin dengan 3 ikatan hidrogen lebih kuat daripada ikatan adenosin-timin yang hanya berikatan dengan 2 ikatan hidrogen; oleh sebab itu, ikatan sitosin-guanin memerlukan panas yang lebih besar untuk dapat memutus ikatan tersebut), ukuran potongan DNA yang akan didenaturasi, dan konsentrasi garam. Pendidihan larutan DNA dilanjutkan dengan mendinginkannya secara cepat ke es (untuk mencegah penggabungan kembali kedua untai) seringkali digunakan untuk “melepaskan sambungan” untai-untai DNA dan membukanya sehingga probe dapat berikatan dengan rangkaian komplementernya. Gambar 6.1 menunjukkan mekanisme pengikatan probe DNA ke gen (DNA sampel).

Gambar 6.1 Mekanisme pengikatan probe DNA ke gen

b. Hibridisasi Dengan Menggunakan Matriks Padat

Meskipun hibridisasi dapat dilakukan dalam larutan (bukan bahan solid) seperti pada topik sebelumnya (1.1.1), bentuk probe yang lebih sering digunakan dalam hibridisasi mencakup penggunaan matriks padat yang mengikat DNA yang akan dianalisis. Prinsip dasar teknik ini adalah sampel DNA dilekatkan pada matriks padat (misalnya, sebuah membran) dan kemudian didenaturasi dengan panas; probe asam nukleat tertentu yang telah diberi label radioaktif atau label enzim kemudian diibarkan bereaksi
dengan DNA yang telah didenaturasi. Setelah mencuci materi yang tidak berikatan, keberadaan radioaktivitas atau keberadaan enzim (dengan metode kolorimetrik setelah menambahkan substrat yang tepat) dideteksi. Keberadaan label yang terikat menunjukkan bahwa probe telah terhibridisasi ke sampel DNA, yang pada akhirnya, merefleksikan keberadaan rangkaian DNA tertentu di dalam sampel. Jika sampel yang akan dianalisis berada pada sebuah jaringan atau sel, teknik hibridisasi disebut **hibridisasi in situ** (akan dibahas pada topik selanjutnya yaitu 1.1.3).

Dalam bentuknya yang paling dasar dan paling sederhana, hibridisasi matriks padat dilakukan dengan mengaplikasikan satu “titik” sampel klinis ke sebuah membran (misalnya, nitroselulosa) dan penambahan probe berlabel spesifik ke sampel tersebut. Setelah mencuci materi yang tidak berikatan, titik tersebut divisualisasi dengan mendeteksi label pada probe. Assay **dot blot** ini adalah pendekatan semua-atau-tidak sama sekali (semata-mata digunakan untuk menentukan apakah rangkaian DNA tertentu terdapat di dalam sampel atau tidak). Jika label terdeteksi (baik melalui metode radiografi maupun melalui kolorimetri, tergantung pada tipe label yang digunakan, probe telah mengikat sampel, menunjukkan keberadaan DNA komplementer terhadap probe di dalam sampel tersebut.

Variasi dalam rangkaian DNA dapat juga dideteksi dengan sebuah metode yang disebut RFLP (**restriction fragment length polymorphism**). Dalam metode ini, DNA pertama-tama dipotong menjadi beberapa fragmen yang lebih kecil dengan menggunakan endonuklease restriksi, yang merupakan enzim yang memotong DNA pada rangkaian spesifik. Fragmen-fragmen dari proses ini dipisahkan menurut ukurannya oleh elektroforesis dalam sebuah gel agarose dengan cara yang serupa dengan pemisahan protein oleh Western Blotting. Ukuran fragmen-fragmen (yang dapat diberi label dan dengan demikian dapat divisualisasi) yang diperoleh dengan pemotongan tersebut bergantung pada DNA yang memiliki rangkaian spesifik tempat endonuklease spesifik melakukan pemotongan.

Pengetahuan mengenai rangkaian tersebut di atas memungkinkan prediksi ukuran fragmen; jika variasi rangkaian tersebut harus terjadi, DNA tidak akan dipotong atau fragmen yang dihasilkan akan memiliki panjang 1000 basa dan enzim tertentu memotong di basa 850, pemotongan tersebut pasti menghasilkan 2 potong DNA dengan panjang masing-masing sekitar 850 dan 150. Jika rangkaian DNA tersebut berbeda atau berubah (misalnya, dalam kasus penyakit genetik yang menyebabkan mutasi atau penyimpangan di tempat endonuklease tertentu melakukan pemotongan), pemotongan oleh endonuklease akan gagal atau menghasilkan potongan dengan ukuran berbeda dari yang diharapkan (rangkaian yang dikenali oleh endonuklease berada di lokasi berbeda).

Saat ini RFLP tidak lagi digunakan secara rutin. Meskipun demikian, RFLP adalah sebuah alat penting dalam memetakan berbagai gen untuk mendeteksi gangguan genetik dan dalam mengevaluasi variasi genetik dalam gen tertentu di antara individu-individu yang berbeda. Tahapan Pengujian RFLP dapat disimak pada Gambar 6.2 berikut ini.
Gambar 6.2 Tahapan Pengujian RFLP (Restriction Fragment Length Polymorphism)

Dari gambar di atas, dapat Anda lihat bahwa analisis pengujian RFLP meliputi 5 tahapan, yaitu:

1. Isolasi dan purifikasi DNA.
2. Amplifikasi menggunakan PCR dan pemotongan fragmen DNA menggunakan enzim restriksi.
3. Pemisahan dan deteksii produk pemotongan DNA menggunakan elektroforesis.
4. Analisis data untuk menghasilkan profil fragmen untuk setiap sampel.
5. Analisis pengelompokkan berdasarkan profil sampel yang diperoleh dari tahap 4.

Perkembangan tambahan pada hibridisasi matriks padat adalah sebuah teknik yang disebut Southern blotting. Istilah ini berasal dari Edwin Southern, seorang ilmuwan yang pertama kali mendeskripsikan teknik ini. Dengan menggunakan Southern blotting, DNA dengan berat molekul tinggi pertama kali dipotong dengan menggunakan endonukslease restriksi menjadi beberapa fragmen kecil, yang kemudian dipisahkan sesuai ukurannya melalui elektroforesis dalam sebuah gel agarose.

Komponen-komponen yang dipisahkan kemudian ditransfer secara langsung ke membran nitrocelulosa, tempat mereka tetap terikat dalam posisi yang telah ditentukan melalui pemisahan elektroforesis. Pelekatan ke membran dicapai dengan pemberian panas yang tinggi. Membran tersebut kemudian “diblok” atau ditangani dengan DNA yang tidak berhubungan (misal, DNA dari sperma ikan) untuk mencegah pengikatan nonspesifik probe ke membran. Probe yang telah diberi label (radioaktif, enzim, atau fluoresen) yang spesifik untuk rangkaian DNA tertentu kemungkinan dibiarkan bereaksi dengan membran, dan jika pengikatan spesifik terjadi, salah satu atau lebih fragmen DNA
awal diberi label. Gambar 6.3 menunjukkan tahapan pengujuan yang dilakukan pada Teknik Southern blotting.

Perbedaan utama antara teknik ini dan *dot blotting* adalah bahwa Southern blotting menentukan apakah rangkaian spesifik hanya berkolaborasi di sebuah area DNA atau berulang pada lebih dari satu fragmen pada DNA tersebut.

Ekspresi gen menghasilkan produksi RNA; metode hibridisasi yang dapat digunakan untuk mendeteksi rangkaian RNA spesifik adalah metode *Northern blotting*. Nama ini diturunkan dari kesamaan metode tersebut dengan Southern blotting. Satu-satunya perbedaan adalah bahwa target analisis dalam *Northern blotting* adalah RNA dan bukan DNA. Sekali lagi, RNA dipotong menjadi beberapa fragmen kecil dengan menggunakan enzim restriksi, dan fragmen-fragmen tersebut kemudian dipisahkan oleh elektroforesis.

Setelah memindahkan fragmen-fragmen tersebut ke sebuah membran, probe berlabel spesifik dibiarkan bereaksi dengan membran; rangkaian RNA spesifik diidentifikasi dengan keberadaan label pada fragmen tertentu. Gambar 6.4 menunjukkan perbandingan antara Teknik Southern blotting, Northern blotting dan Western Blotting. Masing-masing teknik mempunyai tahap pemeriksaan yang relatif sama, yang membedakan adalah jenis sampel dan probe yang digunakan apabila digunakan sampel dan probe DNA (Southern blotting), sampel dan probe RNA (Northern blotting), sampel dan probe protein/polipeptida (Western Blotting).

Gambar 6.3 Tahapan Pengujuan pada Teknik Southern blotting
c. Hibridisasi In Situ

Selain untuk mengidentifikasi rangkaian DNA spesifik pada DNA yang berikatan dengan matriks padat artifisial (seperti sebuah nilon atau membran nitrocelulosa), probe asam nukleat juga dapat digunakan untuk mengidentifikasi rangkaian-rangkaian DNA spesifik dalam sebuah sampel biologis. Pendekatan ini disebut hibridisasi in situ (in situ hybridization/ISH). Prinsipnya sama dengan teknik-teknik hibridisasi lain; sumber cetakan asam nukleat menjadi spesimen biologis, baik sepotong jaringan ataupun sebuah sel, dan targetnya dapat merupakan DNA atau RNA.

Langkah pertama dalam ISH adalah menangani jaringan atau sel untuk memperbaiki asam nukleat target dan membuatnya lebih dapat diakses ke probe. Probe yang telah diberi label (baik DNA maupun RNA) kemudian diibarkan bereaksi dengan jaringan atau sel yang sedang ditangani dalam suhu tinggi untuk memungkinkan terjadinya hibridisasi. Probe tersebut dapat diberi label dengan radioaktif, antigenik (misalnya, digoksigenin, atau DIG, yang dapat divisualisasi dengan menggunakan antibodi berlabel yang spesifik terhadapnya), biotin, atau label fluoresen. Gambar 6.5 merupakan gambaran skema prinsip hibridisasi in situ Fluoresen untuk mencari lokasi gen dalam nukleus.
Gambar 6.5 Skema Prinsip Hibridisasi in situ Fluoresen Untuk Mencari Lokasi Gen dalam nucleus (Sumber: www.flogentec.com/applications-protocols-experiences/fish/)

Dalam probe fluoresen, ISH yang menggunakan fluoresen disebut, secara tepat, FISH (fluorescence in situ hybridization). ISH dan FISH dapat digunakan untuk mengidentifikasi dan melokalisasi DNA atau RNA dalam jaringan atau sel tertentu, yang pada akhirnya merefleksikan ekspresi komponen yang disandi oleh DNA atau RNA tersebut dalam jaringan atau sel tertentu tersebut. FISH juga digunakan untuk mengidentifikasi dan mempelajari gen tertentu dalam kromosom tertentu. Ketersediaan berbagai jenis label berbeda (radioaktif, fluoresen, atau enzimatiik) memungkinkan deteksi DNA atau RNA berbeda di dalam jaringan atau sel tertentu.

Penerapan teknik FISH ini di laboratorium dapat digunakan, misalnya dalam kegiatan analisis untuk mengidentifikasi kelainan genetik, misalnya pada tumor patad dan berguna untuk menegakkan diagnosis, menentukan prognosis dan membantu dalam penatalaksanaan dan meramalkan respons terhadap terapi. Contoh aplikasi yang menggunakan teknik FISH ini adalah prinsip Whole chromosome painting (WCP). WCP adalah teknik mewarnai kromosom menggunakan teknik Fluorescence In Situ Hybridization (FISH). Fluorescence In Situ Hybridization merupakan suatu teknik diagnostik molekuler menggunakan zat warna fluoresen (fluophore) untuk melabel DNA pelacak (DNA probe) yang digunakan untuk mendeteksi DNA yang komplementer. Bila digunakan berbagai DNA pelacak yang melekat pada DNA komplementer di sepanjang kromosom, maka seluruh kromosom akan terwarna. Dengan demikian, dapat dikenal adanya aberasi kromosom baik dalam jumlah maupun strukturnya, apabila tiap kromosom diwarnai dengan fluorophore/fluorochrome/zat warna fluorosens yang berbeda warna (multi color) secara bersamaan. Untuk melihat penempelan DNA pelacak berlabel pada kromosom tersebut dan penampilan masing-masing kromosom yang berwarna-warni digunakan mikroskop fluoresensi seperti yang disajikankan pada Gambar 6.6 berikut ini.
d. Polimorfisme Konformasional Untai Tunggal

Polimorfisme gen adalah suatu kondisi perubahan ketika individu memiliki variasi dalam gen yang sama dalam kisaran biologis. Dalam sebuah populasi, polimorfisme genetik terjadi ketika terdapat bentuk-bentuk gen berbeda pada lokus tertentu dengan frekuensi lebih dari 1% hingga 2%. Polimorfisme nukleotida tunggal (SNP) adalah tempat-tempat di dalam genom ketika rangkaian DNA pada banyak orang berbeda hanya di sebuah basa tunggal. Sekitar 10 juta SNP telah diperkirakan dalam populasi manusia dengan perkiraan 2 variasi umum missense per gen. Sebagian besar SNP bersifat silent (tidak menyebabkan perubahan fungsi gen tertentu atau produknya); namun, dalam beberapa kasus, SNP dapat dihubungkan dengan perubahan (baik struktural maupun fungsional) molekul yang disandikan oleh gen tersebut.

Oleh sebab itu, studi SNP dalam individu atau populasi yang berbeda penting dalam biologi molekuler dasar dan/atau diagnostik. Salah satu teknik yang digunakan untuk mendeteksi SNP adalah polimorfisme konformasional untai tunggal (single-strand conformational polymorphism, SSCP).

Perubahan-perubahan basa tunggal dalam fragmen DNA yang besar tidak dapat dideteksi semata-mata dengan elektroforesis gel karena perbedaan ukuran fragmen yang tidak sama akibat perubahan basa tunggal dapat diabaikan. Namun, setelah didenaturasi, DNA untai tunggal melipat dirinya sendiri menjadi struktur tiga (3) dimensi selama proses renaturasi. Konformasi DNA untai tunggal bergantung pada rangkaian DNA-nya, dan mutasi apa pun bahkan pada basa nukleotida tunggal dapat mempengaruhi konformasi tiga (3) dimensi untai tersebut.

Molekul DNA untai tunggal ketika dipisahkan oleh elektroforesis pada matriks gel di bawah kondisi non-denaturasi bermigrasi secara berbeda untuk mempertahankan

Gambar 1: Hasil pewarnaan WCP multi warna meng-gunakan kit pelacak mFISH. (Sumber: E. Budiyanti, dkk., 2014)
Biologi Sel dan Molekuler

keutuhan konformasi mereka. Oleh karena itu, gen yang sedang dipelajari, misalnya, dari individu yang normal dan diduga memiliki penyakit, dapat diamplifikasi dengan PCR dan menjadi subjek SSCP untuk tujuan diagnostik. SSCP hanya dapat menunjukkan bahwa terdapat perbedaan di antara 2 fragmen DNA, dan penentuan rangkaian DNA selanjutnya diperlukan untuk menunjukkan perubahan tersebut. SSCP belakangan digunakan dalam penentuan genotipe dan dalam mengidentifikasi alel-alel berbeda dalam subjek homozigot dan heterozigot. SSCP juga digunakan dalam virologi, terutama dalam mempelajari virus yang memiliki variasi genetik yang banyak dan sering.

SSCP

Gambar 6.6. Skema Prinsip Polimorfisme Konformasional Untai Tunggal (single-strand conformational polymorphism, SSCP)

e. Mikroarray

Teknik-teknik yang dideskripsikan dalam bagian sebelumnya biasanya menargetkan sebuah gen, rangkaian DNA tunggal, atau, paling banyak, sejumlah rangkaian atau gen terbatas. Namun, dalam beberapa situasi, terdapat kebutuhan untuk menganalisis ratusan atau bahkan ribuan gen atau rangkaian DNA yang berbeda. Pada kasus ini, mikroarray dilakukan. Mikroarray DNA, yang juga dikenal sebagai gene chips, merupakan matriks padat yang terdiri dari beragam material (misalnya, kaca atau silikon) yang merupakan tempat melekatnya ratusan, ribuan, atau bahkan puluhan ribu DNA berbeda dalam jumlah sedikit (baik potongan gen atau rangkaian spesifik gen dalam kuantitas pikomole) ke berbagai tempat mikroskopik.

Penggunaan mikroarray adalah suatu bentuk hibridisasi, yaitu probe dilekatkan ke matriks dan sampel DNA yang akan diperiksa ditambahkan ke matriks. Sampel uji DNA (yang disebut target) yang diberi label dengan label fluoresen atau label kemiluminesen kemudian diibiarkan bereaksi dengan probe pada chip; setelah mencuci materi yang tidak terikat, pengikatan spesifik target ke probe tertentu dievaluasi. Kekuatan pengikatan target tertentu ke probe pasangannya pada akhirnya bergantung pada komplementaritas target ke probe. Dengan kata lain, semakin dekat rangkaian target ke rangkaian

Gambar 6.7 Skema Teknik Mikroarray

f. Reaksi Rantai Polimerase

Keuntungan teknik ini adalah fakta bahwa memiliki potongan DNA yang sama dalam jumlah besar mempermudah untuk mempelajari/menganalisisnya. Teknik ini
memerlukan deoksineklotida (dNTP pada basa-basa DNA berbeda), polimerase DNA yang stabil secara suhu, potongan DNA pendek yang disebut oligonukleotida primer (biasanya dengan panjang 10-30 pasangan basa), dan mesin pensiklus suhu (termosikler).

Prinsip reaksi ini adalah sebagai berikut: area DNA yang berisi rangkaian yang akan dipelajari dipanaskan untuk “melelehkan” atau “melepaskan ikatan” DNA; ini disebut langkah denaturasi. Oligonukleotida primer spesifik yang mengapit area yang akan diperkuat, satu di ujung 3’ sebuah untai DNA dan yang lain di ujung 3’ untai antiparalel lain kemudian dibiarkan berikatan dengan rangkaian spesifik mereka pada masing-masing untai “yang telah dilepaskan ikatannya”. Terdapat periode “pendinginan” ketika primer dibiarkan berikatan dengan untai DNA tunggal; ini disebut langkah penguatan (annealing). Pada tahap ini, polimerase DNA yang stabil secara suhu mensintesis untai DNA komplementer yang dimulai di primer dan menggunakan untai DNA terbuka sebagai cetakan. Polimerase DNA menambah nukleotida, sekali lagi mengikuti rangkaian potongan DNA yang telah “dilepas ikatannya”. Dengan demikian, sebuah untai direplikasi dalam satu arah dan untai lain direplikasi dalam arah lain sehingga membuat salinan setiap untai terbuka dalam langkah elongasi atau ekstensi. Pada tahap ini, terdapat 2 (dua) salinan potongan DNA: masing-masing satu untuk setiap untai.

Keseluruhan proses kemudian diulang dengan memanaskan kembali DNA, memungkinkan primer berikatan dengan tempat spesifik mereka kembali (yang setelah siklus pertama kini menjadi dua), mensintesis dua (2) salinan potongan DNA lagi (yang, karena jumlahnya telah menjadi dua kali lipat dalam siklus pertama, kini menghasilkan empat (4) salinan), dan kemudian mengulangi seluruh prosedur denaturasi, penguatan, elongasi, dan pendinginan berkali-kali untuk mendapatkan jumlah eksponensial potongan DNA untuk diamplifikasi.

Langkah terakhir adalah mendinginkan campuran reaksi keseluruhan ke suhu 5 hingga 15 derajat celcius (°C) untuk menyimpan produk akhir untuk penggunaan tambahan. Fragmen yang didapat selanjutnya divisualisasi dalam gel agarose, zat warna yang umum digunakan adalah ethidium bromida.
Gambar 6.8 Prinsip Dasar Reaksi PCR

PCR memiliki banyak kegunaan dalam biologi molekuler; misalnya dapat mengidentifikasi organisme yang sulit tumbuh dalam kondisi laboratorium atau yang ada dalam jumlah sangat sedikit; PCR memainkan peran penting dalam penentuan genotipe ini dengan mengidentifikasi rangkaian DNA spesifik untuk genotipe HLA tertentu.
PCR dapat digunakan untuk mengamplifikasi potongan RNA. Prinsip amplifikasinya sama kecuali bahwa dalam kasus RNA, langkah awal tambahan diperlukan sebelum amplifikasi. Ini mencakup konversi RNA target menjadi DNA dengan reverse transcriptase, yang merupakan sebuah enzim yang mentranskripsikan RNA menjadi DNA. Dengan demikian, teknik ini dinamakan RT-PCR (reverse transcriptase PCR). Contoh penggunaan RT-PCR adalah identifikasi RNA virus dalam pemeriksaan HIV. RNA diekstrak dari plasma individu dan dibiarkan bereaksi dengan sediaan reverse transcriptase; ini mengubah RNA virus menjadi cDNA. Reaksi PCR kemudian digunakan untuk memperkuat area spesifik pada DNA yang menyandi gen-gen virus tertentu. RT-PCR juga digunakan untuk memantau ekspresi gen karena produksi RNA dari gen merefleksikan ekspresi (dengan kata lain, “menghidupkan”) gen tertentu tersebut.

Dari semua teknik yang telah dijabarkan di atas, teknik PCR merupakan yang paling umum diaplikasikan dalam diagnostik penyakit di laboratorium. Oleh karena itu, pembahasan mengenai PCR akan diuraikan lebih lanjut dan khusus pada Bab 8.

2. Teknik Analisis Dasar Molekuler Untuk Protein

a. Protein

Protein berasal dari bahasa Yunani proteios yang berarti pertama atau utama. Protein merupakan makromolekul yang menyusun lebih dari separuh bagian dari sel. Protein menentukan ukuran dan struktur sel, komponen utama dari sistem komunikasi antar sel serta sebagai katalis berbagai reaksi biokimia di dalam sel. Karena itulah sebagian besar aktivitas penelitian biokimia tertuju pada protein khususnya hormone, antibodi dan enzim.

Protein merupakan kelompok biomakromolekul yang sangat heterogen. Ketika berada di luar makhluk hidup atau sel, protein sangat tidak stabil. Untuk mempertahankan fungsinya, setiap jenis protein membutuhkan kondisi tertentu ketika diekstraksi dari normal biological milieu(lingkungan biologis yang normal). Protein yang diekstraksi hendaknya dihindarkan dari proteolisis atau dipertahankan aktivitas enzimatiknya. Untuk menganalisa protein yang ada di dalam sel tersebut, diperlukan prosedur fraksinasi sel yaitu (1) memisahkan sel dari jaringannya, (2) menghancurkan membran sel untuk mengambil kandungan sitoplasma dan organelnya serta (3) memisahkan organel-organel dan molekul penyusunnya. Prosedur (1) dan (2) dinamakan homogenasi dapat dilakukan dengan menggunakan alat yang paling sederhana seperti homogeniser atau mortal sampai alat yang paling mutakhir seperti pemakaian vibrasi dan sonikasi.
tergantung pada bahan yang akan dihomogenasi. Prosedur (3) dilakukan dengan menggunakan sentrifuge pada kecepatan dan waktu tertentu.

Sebagian besar protein merupakan molekul yang mudah rusak bila tidak berada pada kondisi fisiologisnya. Karena itu, untuk mempertahankan struktur dan fungsi protein, fraksinasi dilakukan pada suhu rendah (0-40°C) dalam buffer dan pH tertentu (tergantung dari jenis protein yang akan dianalisa).

Hasil homogenasi yang dinamakan homogenat biasanya masih berupa larutan keruh yang terdiri dari debris sel (bagian sel yang tidak hancur), organel-organel sel dan makromolekul penyusun sel diantaranya yaitu protein. Dengan sentrifugasi, debris dan organel sel akan mengendap di dasar tabung sentrifuge (dinamakan pellet), sedangkan makromolekul (termasuk di dalamnya protein) yang ukurannya jauh lebih kecil daripada debris dan organel sel tidak akan mengendap tetapi terlarut dalam buffer (dinamakan supernatant yang bening). Supernatant inilah yang dipakai sebagai sampel untuk analisa protein dalam jaringan.

Untuk analisa protein yang di dalam plasma atau serum darah, prosedur fraksinasi (1) dan (2) tidak diperlukan karena protein sudah terlarut dalam plasma darah, sedangkan sentrifugasi tetap diperlukan untuk mengendapkan sel-sel darah sehingga protein yang terlarut dalam plasma atau serum terdapat sebagai supernatant.

Protein hasil sentrifugasi homogenat masih terdiri dari berbagai jenis protein (atau dinamakan crude protein) atau protein hasil pengendapan amonium sulfat (jenis protein lebih spesifik) selanjutnya dapat dianalisa secara kuantitatif maupun kualitatif.

Analisa kuantitatif protein biasanya menggunakan spektrofotometer dengan panjang gelombang tertentu tergantung pada jenis protein dan pereaksi yang dipakai. Dengan spektrofotometer dapat diketahui banyaknya atau jumlah protein dalam suatu sampel (biasanya dinyatakan dalam mg protein/ml sampel, µg protein/ml sampel atau dalam satuan ppm tergantung dari satuan yang dipakai pada saat membuat kurva standar). Analisa kualitatif protein dapat menggunakan kromatografi ataupun elektroforesis tergantung pada tujuan analisa. Dalam prakteknya, baik analisa kualitatif maupun kuantitatif dapat dipakai secara terpisah ataupun dipakai secara bersamaan dalam suatu rangkaian analisa.
b. Metode Pemisahan Protein

Di bawah ini akan dijelaskannya metode yang umum digunakan untuk pemisahan protein:

1) SDS-PAGE

2) Pemfokusan Isoelektrik (Isoelectric Focussing)

Dalam metode ini, protein dipisahkan berdasarkan keseimbangan residu asam amino asam (muatan negatif) dan basa (muatan positif), yang menentukan sifatnya sebagai titik isoelektrik (pI), suatu kondisi dimana pH pada muatan bersih protein menjadi nol. Protein yang dibedakan berdasarkan sedikit mungkin muatan residu (misal, bentuk mono- dan di-phosphorylated dari suatu protein) dapat dipisahkan melalui metode ini. Sebaliknya, protein dengan nilai pI yang mirip tetapi ukurannya sangat berbeda dapat memberikan hasil running pada posisi yang sama.

3) HPLC dan TLC

High-performance liquid chromatography (HPLC) dapat digunakan untuk memisahkan dan memurnikan protein/peptida berdasarkan ukuran, muatan atau hidrophobisitas. Thin layer chromatography (TLC) dapat juga digunakan untuk memisahkan peptida (misal, derivat dari digesti proteolitik suatu protein) berdasarkan pada kemiripan sifatnya. Kedua metode ini sangat berguna sebagai tambahan pendekatan gel-based, terutama untuk analisis peptida dan untuk tujuan preparasi.

4) Elektroforesis 2 Dimensi (2-D)

Elektroforesis 2 Dimensi adalah suatu teknik analisis pemisahan protein menggunakan dua dimensi yang diberi arus listrik. Jika sebuah larutan yang mengandung molekul protein diberi arus listrik, maka protein itu akan bermigrasi dengan laju yang bergantung pada muatan, ukuran serta bentuknya. Teknik ini sering digunakan untuk studi proteomika (analisis molekular terhadap keseluruhan protein yang dihasilkan dari ekspresi gen dalam sel) seperti melihat profil/pola protein, analisis komparatif ekspresi dari dua (2) sampel protein atau lebih, lokalisasi dan identifikasi pasca translasi, studi interaksi protein-protein, pemeriksaan kemurnian dan purifikasi (pemurnian) protein skala mikro. Hal ini dikarenakan, elektroforesis 2-D (dua dimensi) mampu memisahkan hingga ribuan protein secara serempak.
Prinsip dasar dalam elektroforesis 2-D adalah dimensi pertama dalam pemisahan protein dilakukan berdasarkan titik isoelektriknya (Isoelectric point, IEP, pl) yaitu pada pH dimana muatan tiap protein netral atau sama dengan 0. Elektroforesis dimensi pertama ini sering disebut juga elektroforesis isoelektrik pemfokusan atau IEF (Isoelectric Focussing). Teknik IEF ini bekerja dengan menerapkan arus listrik pada protein dalam gradien pH tertentu dan protein akan bermigrasi karena adanya tegangan/arus listrik.

Pada dimensi pertama, protein yang akan dianalisis dilarutkan dalam larutan yang mengandung deterjen non ionik (tidak bermuatan) yang dicampur dengan merkaptopetanol dan urea yang mengubah sifat dan menguraikan semua rantai polipeptida tanpa mengubah muatan asli masing-masing. Ketika protein mencapai nilai pH yang sesuai dengan titik isoelektriknya maka protein berhenti bermigrasi, dimana muatan protein tersebut netral.

Pada dimensi kedua, protein akan dipisahkan berdasarkan berat atau massa molekulnya. Pemisahan protein dengan teknik ini menggunakan sodium dodecyl sulfate poliakrilamida gel sebagai medium penyanga. Gel yang mengandung protein pada elektroforesis dimensi pertama dicelupkan ke dalam larutan sodium dodecyl sulfate (SDS) untuk memberikan muatan negatif pada protein. Protein yang bermuatan negatif akan bergerak dari katoda (kutub negatif) menuju anoda (kutub positif) dengan adanya tegangan/arus listrik. Protein saling terpisah membentuk bintik-bintik yang tersusun menurut berat molekul setiap protein.

Untuk melihat hasil pemisahan protein menggunakan elektroforesis 2-D, dapat dilakukan pewarnaan gel dengan coomasie atau pewarnaan perak. Teknik visualisasi lain yang dapat digunakan adalah fluorografi atau autoradiografi (radioaktif).

Gel yang telah divisualisasi dapat di dokumentasikan menggunakan kamera atau scanner. Dibawah ini contoh seperangkat alat yang digunakan untuk melakukan elektroforesis dua dimensi, yaitu Protean® i12™ IEF Cell dan Criterion™ Cell. Alat yang digunakan untuk elektroforesis dimensi pertama adalah Protean® i12™ IEF Cell yaitu disajikan pada Gambar 6.9.
Gambar 6.9 Alat untuk Elektroforesis Dimensi Pertama (Protean® i12™ IEF Cell)
Sedangkan alat yang digunakan untuk elektroforesis dimensi kedua adalah Criterion™
Cell, dapat disimak pada Gambar 6.10.

Gambar 6.10 Alat untuk Elektroforesis Dimensi Kedua (Criterion™ Cell)

Hasil analisis elektroforesis dua dimensi ini dapat digunakan untuk
mengetahui perubahan dan identifikasi proteomik yang selanjutnya diketahui
ekspresi gen yang meningkat atau menurun akibat cekaman tertentu.
5) Western Blotting
Western blotting adalah proses pemindahan protein dari gel hasil
elektroforesis ke membran. Membran ini dapat diperlakukan lebih fleksibel
daripada gel sehingga protein yang terblot pada membran dapat dideteksi dengan
cara visual maupun fluoresensi.

Deteksi ekspresi protein pada organisme dilakukan dengan prinsip imunologi
menggunakan antibody primer dan antibody sekunder. Setelah pemberian antibody
sekunder, deteksi dilakukan secara visual dengan pemberian kromogen atau secara
fluoresensi. Pada deteksi secara fluoresensi, reaksi antara antibody primer dengan
antibody sekunder akan memberikan hasil fluoresens yang selanjutnya akan
membakar film X-ray, deteksi ini dilakukan di kamar gelap.

Western blot menjadi tes konfirmasi bagi ELISA karena pemeriksaan ini lebih
sensitif dan lebih spesifik, sehingga kasus ‘yang tidak dapat disimpulkan’ sangat
kecil. Walaupun demikian, pemeriksaan ini lebih sulit dan butuh keahlian lebih
dalam melakukannya. Skema penerapan prinsip Western Blot dapat disimak pada
Gambar 6.11.
c. Metode Identifikasi Protein
Setelah kita menemukan protein dalam bentuk band/spot pada gel atau sebuah puncak pada pemisahan HPLC, maka tahap selanjutnya adalah menentukan identitas molekulernya. Terdapat dua metode yang biasa digunakan yaitu, metode degradasi Edman dan spektroskopi massa.

1) Degradasi Edman
Degradasi Edman menggunakan reagen isothiocyanates untuk bereaksi dengan N-terminal dari protein atau peptida. Dibawah kondisi yang sesuai, degradasi Edman akan membelah residu N-terminal asam amino untuk menghasilkan derivat asam amino plus ujung amino bebas sesuai dengan asam amino selanjutnya dalam rantai polipeptida:

\[
\text{NH}_2\text{AA1- AA2- AA3- AA4-} + \text{(isothiocyanate)} \rightarrow \text{X- AA1} + \text{NH}_2\text{- AA2- AA3- AA4-}
\]

dimana X adalah ‘tag’ kimia yang ditangkap reagen ke grup amino N-terminal sebagai bagian dari proses pembelahan. Kita kemudian dapat memisahkan X-AAn dari campuran dan mengidentifikasi asam amino apa yang ter-representasi. Siklus reaksi di atas dapat diulang untuk menjelaskan asam amino kedua di rantai, AA2:

\[
\text{NH}_2\text{- AA2- AA3- AA4-} + \text{(isothiocyanate)} \rightarrow \text{X- AA2} + \text{NH}_2\text{- AA3- AA4-}
\]
Reagen isothiocyanate dapat berfluoresensi atau menjadi radioaktif, memungkinkan untuk mendeteksi sejumlah kecil derivat asam amino yang dilepaskan X-AA dan oleh karenanya memungkinkan sequencing sejumlah kecil protein.

Ketika sekuen terminal amino dari protein telah ditentukan sekurang-kurangnya 8-10 residu, penyimpulan sekuen dapat dibandingkan ke database protein atau genom untuk organisme yang akan kita identifikasi proteinnya. Jika lebih dari satu protein dari database yang cocok dengan sekuen hasil penelitian kita, penambahan kriteria penelitian seperti berat molekul protein perlu dilakukan. Dalam kasus yang sama, memungkinkan untuk dilakukan membelah protein (secara kimiawi atau enzimatik) menjadi peptida yang dapat disekuensing untuk identifikasi protein.

Degradasi Edman memiliki keterbatasan: metode ini tidak bekerja dengan baik pada protein atau peptida yang sangat hidropobik (masalah potensial untuk protein memban), dan metode ini tidak bekerja ketika N-terminal dari protein atau peptida diblok secara kimiawi. Namun, hal ini tetap memungkinkan untuk membelah protein (secara kimiawi atau enzimatik) menjadi peptida, sehingga tetap memiliki ujung-amino bebas dan dapat disekuensing.

2) Spektrometri Massa

Spektrometri massa adalah metode yang sangat sensitif dan akurat untuk menentukan berat molekul protein secara akurat. Karena metode ini sangat sensitif dan dapat mengerjakan sampel dalam jumlah banyak dengan cepat, metode ini menjadi sangat populer dalam menentukan protein yang berbeda di dalam sampel yang kompleks, yang dikenal sebagai analisis proteomik. Spektrometri massa dapat digunakan untuk menentukan sekuen protein dan menentukan identitas protein dengan konsep yang mirip dengan degradasi Edman.

Endoprotease (enzim untuk membelah ikatan peptida pada rantai polipeptida) mempunyai spesifisitas yang signifikan. Ketika protein dibelah oleh endoprotease, maka akan terbentuk fragmen-fragmen, dimana jumlah dan massanya secara langsung ditentukan oleh sekuen asam amino. Spektrometri massa menyediakan sejumlah informasi tentang hasil pembelahan isolasi protein oleh endoprotease:
Kita dapat membandingkan hasil penelitian kita dengan database protein untuk menentukan protein apa yang terdapat dalam organisme yang kita teliti. Spektrometri massa cocok digunakan untuk analisis karena metode ini dapat menentukan berat molekul dengan akurat dari sejumlah kecil fragmen yang dihasilkan dari protein hasil pemotongan. Teknik ini telah dikembangkan dari pemotongan protein hasil pemisahan gel elektroforesis dua dimensi dan kemudian diinjeksi secara langsung ke spektrometer massa untuk analisis fragmen yang telah dihasilkan.

Latihan

1) Jelaskan teknik analisis dasar molekuler DNA berikut ini:
 a. Restriction Fragment Length Polymorphism (RFLP)
 b. Southern blotting
 c. *Hibridisasi* in situ
 d. Single-Strand Conformational Polymorphism (SSCP)
 e. *Mikroarray*
 f. *PCR*

2) Jelaskan secara ringkas metode pemisahan protein berikut ini:
 a. SDS-PAGE
 b. Pemfokusan Isoelektrik (Isoelectric Focussing)
 c. HPLC dan TLC
 d. Elektroforesis 2 Dimensi (2-D)
3) Jelaskan secara ringkas metode identifikasi protein berikut ini:
 a. Degradasi Edman
 b. Spektrometri Massa

Petunjuk Jawaban Latihan

Untuk membantu Anda dalam mengerjakan soal latihan tersebut silakan pelajari kembali materi tentang:
1) Teknik Analisis Dasar Molekuler Untuk Asam Nukleat (DNA atau RNA)
2) Teknik Analisis Dasar Molekuler Untuk Protein

Ringkasan

1. Probe asam nukleat dengan rangkaian tertentu dapat digunakan untuk mengikat dan dengan demikian mengidentifikasi potongan komplementer DNA. Pendekatan yang disebut **hibridisasi** ini merupakan dasar untuk beberapa teknik biologi molekuler.

2. **Restriction Fragment Length Polymorphism (RFLP)** merupakan salah satu metode untuk mendeteksi adanya variasi dalam rangkaian DNA. Dalam metode ini, DNA hasil isolasi dan purifikasi kemudian diamplifikasi dengan PCR. Selanjutnya DNA hasil amplifikasi dipotong menjadi beberapa fragmen yang lebih kecil dengan menggunakan endonuklease restriksi, yang merupakan enzim yang memotong DNA pada rangkaian spesifik. Fragmen-fragmen dari proses ini selanjutnya dipisahkan menurut ukurannya oleh elektroforesis gel agarose. Ukuran fragmen-fragmen (yang dapat diberi label dan dengan demikian dapat divisualisasi) yang diperoleh dengan pemotongan tersebut bergantung pada DNA yang memiliki rangkaian spesifik tempat endonuklease spesifik melakukan pemotongan. Selanjutnya dilakukan analisis data dan analisis pengelompokkan berdasarkan profil sampel yang diperoleh.

3. **Southern blotting.** Pada metode ini, DNA dengan berat molekul tinggi pertama kali dipotong dengan menggunakan endonuklease restriksi menjadi beberapa fragmen kecil, kemudian dipisahkan sesuai ukurannya melalui elektroforesis dalam sebuah gel agarose. Komponen-komponen yang dipisahkan kemudian ditransfer secara langsung ke membran nitroselulosa. Penempakan ke membran dicapai dengan pemberian panas yang tinggi. Membran tersebut kemudian “diblok” atau ditangani dengan DNA yang tidak berhubungan (misal, DNA dari sperma ikan) untuk mencegah pengikatan nonspesifik probe ke membran. Probe yang telah diberi label (radioaktif, enzim, atau fluoresen) yang spesifik untuk rangkaian DNA tertentu kemungkinan dibiarkan bereaksi dengan membran, dan jika pengikatan spesifik terjadi, salah satu atau lebih fragmen DNA awal diberi label.
4. **Northern blotting.** Target analisis dalam metode ini adalah RNA. RNA dipotong menjadi beberapa fragmen kecil dengan menggunakan enzim restriksi, dan fragmen-fragmen tersebut kemudian dipisahkan oleh elektroforesis. Setelah memindahkan fragmen-fragmen tersebut ke sebuah membran, probe berlabel spesifik dibiarkan bereaksi dengan membran; rangkaian RNA spesifik diidentifikasi dengan keberadaan label pada fragmen tertentu.

5. **Hibridisasi in situ (in situ hybridization, ISH)** ialah metode analisis molekuler DNA yang menggunakan asam nukleat untuk mengidentifikasi rangkaian-rangkaian DNA spesifik dalam sebuah sampel biologis. Prinsipnya sama dengan teknik-teknik hibridisasi lain; sumber cetakan asam nukleat menjadi spesimen biologis, baik sepotong jaringan ataupun sebuah sel, dan targetnya dapat merupakan DNA atau RNA. Langkah pertama dalam ISH adalah menangani jaringan atau sel untuk memperbaiki asam nukleat target dan membuatnya lebih dapat diakses ke probe. Probe yang telah diberi label (baik DNA maupun RNA) kemudian dibiarkan bereaksi dengan jaringan atau sel yang sedang ditangani dalam suhu tinggi untuk memungkinkan terjadinya hibridisasi. Probe tersebut dapat diberi label dengan radioaktif, antigenik (misalnya, digoksigenin, atau DIG, yang dapat divedialisasi dengan menggunakan antibodi berlabel yang spesifik terhadapnya), biotin, atau label fluoresen. Dalam probe fluoresen, ISH yang menggunakan fluoresen disebut, secara tepat, FISH (fluorescence in situ hybridization). ISH dapat digunakan untuk mengidentifikasi dan melokalisasi DNA atau RNA dalam jaringan atau sel tertentu, yang pada akhirnya merefleksikan ekspresi komponen yang disandi oleh DNA atau RNA tersebut dalam jaringan atau sel tertentu tersebut.

6. **Polimorfisme konformasional untai tunggal (single-strand conformational polymorphism, SSCP)** adalah salah satu teknik yang digunakan untuk mendeteksi polimorfisme nukleotida tunggal. Setelah didenaturasi, DNA untai tunggal melipat dirinya sendiri menjadi struktur 3 dimensi selama proses renaturasi. Konformasi DNA untai tunggal bergantung pada rangkaian DNA-nya, dan mutasi apa pun bahkan pada basa nukleotida tunggal dapat memengaruhi konformasi 3 dimensi untai tersebut. Molekul DNA untai tunggal ketika dipisahkan oleh elektroforesis pada matriks gel di bawah kondisi non-denaturasi bermigrasi secara berbeda untuk mempertahankan keutuhan konformasi mereka. Oleh karena itu, gen yang sedang dipelajari, misalnya, dari individu yang normal dan diduga memiliki penyakit, dapat diamplifikasi dengan PCR dan menjadi subjek SSCP untuk tujuan diagnostik. SSCP hanya dapat menunjukkan bahwa terdapat perbedaan di antara 2 fragmen DNA, dan penentuan rangkaian DNA selanjutnya diperlukan untuk menentukan perubahan tersebut. SSCP belakangan digunakan dalam penentuan genotipe dan dalam mengidentifikasi alel-alel berbeda dalam subjek homozigot dan heterozigot. SSCP juga digunakan dalam virologi, terutama dalam mempelajari virus yang memiliki variasi genetik yang banyak dan sering.

7. **Microarray DNA,** dikenal juga sebagai gene chips digunakan untuk menganalisis ratusan atau bahkan ribuan gen atau rangkaian DNA yang berbeda. Penggunaan mikroarray adalah suatu bentuk hibridisasi, yaitu probe diletakkan ke matriks dan

8. **Polymerase Chain Reaction (PCR)** merupakan metode untuk memperbanyak salinan DNA. Proses PCR meliputi tahapan denaturasi, penguatan(annealing), dan elongasi. Denaturasi yaitu proses memanaskan DNA sehingga untai gandanya terbuka dan menghasilkan dua untai tunggal DNA; penguatan(annealing) ialah tahap dimana primer di biarkan berikatan dengan untai tunggal DNA. Selanjutnya pada tahap elongasi, polimerase DNA yang stabil secara suhu mensintesis untai DNA komplementer yang dimulai di primer dan menggunakan untai DNA terbuka sebagai cetakan. Polimerase DNA menambah nukleotida, sekali lagi mengikuti rangkaian potongan DNA yang telah “dilepas ikatannya”. Dengan demikian, sebuah untai direplikasi dalam satu arah dan untai lain direplikasi dalam arah lain sehingga membuat salinan setiap untai terbuka. Tahapan ini diulang berkali-kali untuk mendapatkan sejumlah eksponensial potongan DNA hasil amplifikasi.

9. **SDS-PAGE (sodium dodecyl sulphate polyacrylamid gel electrophoresis)** merupakan metode pemisahan protein berdasarkan berat molekulnya.

10. **Pemfokusan Isoelektrik (Isoelectric Focussing)** merupakan metode pemisahan protein berdasarkan keseimbangan residu asam amino asam (muatan negatif) dan basa (muatan positif), yang mana menentukan sifatnya yang disebut sebagai titik isoelektrik (pl), suatu kondisi dimana pH pada muatan bersih protein menjadi nol.

12. **Elektroforesis 2 Dimensi** adalah suatu teknik analisis pemisahan protein menggunakan dua dimensi yang diberi arus listrik. Prinsip dasar dalam elektroforesis 2-D adalah dimensi pertama dalam pemisahan protein dilakukan berdasarkan titik isoelektriknya (Isoelectric point, IEP, pl) yaitu pada pH dimana muatan tiap protein netral atau sama dengan O. Pada dimensi kedua, protein akan dipisahkan berdasarkan berat atau massa molekulnya. Teknik ini sering digunakan...
untuk studi proteomika (analisis molekular terhadap keseluruhan protein yang dihasilkan dari ekspresi gen dalam sel) seperti melihat profil/pola protein, analisis komparatif ekspresi dari 2 sampel protein atau lebih, lokalisasi dan identifikasi pos translati, studi interaksi protein-protein, pemeriksaan kemurnian dan purifikasi (pemurnian) protein skala mikro.

15. **Spektrometri massa** adalah metode yang sangat sensitif dan akurat untuk menentukan berat molekul protein secara akurat. Karena metode ini sangat sensitif dan dapat mengerjakan sampel dalam jumlah banyak dengan cepat, metode ini menjadi sangat populer dalam menentukan protein yang berbeda di dalam sampel yang kompleks, yang dikenal sebagai analisis proteomik. Spektrometri massa dapat digunakan untuk menentukan sekuen protein dan menentukan identitas protein dengan konsep yang mirip dengan degradasi Edman.

Tes 1

1) Mendesain probe asam nukleat yang komplemen dengan suatu potongan DNA target, dengan tujuan mengidentifikasi DNA target tersebut merupakan pendekatan dari...
 A. sekuensing
 B. isolasi
 C. hibridisasi
 D. amplifikasi
2) Enzim yang digunakan untuk memotong DNA agar menjadi fragmen yang lebih kecil adalah....
 A. endonuklease restriksi
 B. ligase
 C. polimerase
 D. DNase

3) Mereaksikan probe yang telah diberi label radioaktif agar bereaksi dengan jaringan atau sel yang sedang ditangani dalam suhu tinggi untuk memungkinkan terjadinya hibridisasi merupakan prinsip dari....
 A. RFLP
 B. kloning
 C. hibridisasi ex situ
 D. hibridisasi in situ

4) Metode hibridisasi yang dapat digunakan untuk mendeteksi rangkaian DNA spesifik adalah....
 A. Southern blotting
 B. Western blotting
 C. Northern blotting
 D. SSCP

5) Metode hibridisasi yang dapat digunakan untuk mendeteksi rangkaian RNA spesifik adalah....
 A. Southern blotting
 B. Western blotting
 C. Northern blotting
 D. SSCP

6) Pada amplifikasi RNA menggunakan PCR, perlu dilakukan konversi RNA target menjadi DNA menggunakan....
 A. dNTP
 B. b.reverse transcriptase
 C. polimerase DNA
 D. primer

7) Untuk menganalisis ratusan atau bahkan ribuan gen atau rangkaian DNA yang berbeda, perlu digunakan teknik analisis....
 A. Mikroarray
 B. Western blotting
 C. c.RFLP
 D. Southern blotting
8) SDS-PAGE (sodium dodecyl sulphate polyacrylamid gel electrophoresis) merupakan salah satu teknik pemisahan protein berdasarkan....
A. titik isoelektrik
B. muatan
C. hidroprobisitas
D. berat molekul

9) Pada metode degradasi Edman, reagen yang digunakan untuk bereaksi dengan N-terminal dari protein atau peptida adalah....
A. kloroform
B. endoprotease
C. NFW (Nuclease Free Water)
D. isothiocyanates

10) Untuk menganalisis berat molekul sejumlah kecil fragmen protein hasil pemisahan gel elektroforesis kita dapat menggunakan metode....
A. Degradasi Edman
B. Spektrometri massa
C. Pemfokusan Isoelektrik
D. HPLC

Tingkat penguasaan = Jumlah Jawaban yang Benar x 100%
JumlahSoal

Arti tingkat penguasaan :

90 - 100% = baik sekali
80 - 89% = baik
70 - 79% = cukup
< 70% = kurang

Apabila mencapai tingkat penguasaan 80% atau lebih, Anda dapat meneruskan dengan Bab selanjutnya. Bagus! Jika masih di bawah 80%, Anda harus mengulangi materi Bab 6, terutama bagian yang belum dikuasai.
Topik 2
Pengenalan Ruangan Dan Peralatan Laboratorium Biologi Molekuler

Setelah mempelajari teknik dasar analisis biologi molekuler pada topik sebelumnya, selanjutnya pada topik ini akan dipelajari tentang pengenalan ruangan dan peralatan laboratorium molekuler.

Oleh karena itu sebelum melakukan kegiatan di laboratorium, maka teknisi laboratorium harus terlebih dahulu mengenal kondisi laboratorium yang akan digunakan untuk bekerja, penempatan peralatan secara tepat, mengenal sifat-sifat bahan kimia yang akan dipergunakan, memahami teknik pelaksanaan suatu prosedur analisis secara benar dan mengetahui apa yang harus dilakukan sebelum, selama dan setelah suatu pekerjaan selesai dilaksanakan.

Berbagai pengetahuan dasar khususnya tentang teknik pemakaian peralatan secara tepat dalam suatu pekerjaan di laboratorium sangat diperlukan untuk menghindari terjadinya kesalahan-kesalahan yang dapat merugikan, baik bagi kepentingan penelitian pelaksana/peneliti itu sendiri dan/atau kesehatan serta keselamatan pengguna
laboratorium. Peralatan yang dipergunakan di laboratorium molekuler dapat dikelompokkan menjadi peralatan standar dan peralatan pendukung. Peralatan standar umumnya berharga sangat mahal, sehingga pemakaian peralatan tersebut mencegah terjadinya kerusakan yang diakibatkan oleh kesalahan pemakaian.

Gambar 6.13 Contoh Kegiatan di Laboratorium Biomolekuler

Keberhasilan suatu pekerjaan laboratorium biomolekuler sangat ditentukan oleh berbagai hal yang kompleks antara lain, jenis peralatan yang digunakan, bahan-bahan kimia, larutan stok, prosedur pelaksanaan pekerjaan, ketertiban pelaksanaan, ketepatan waktu, hingga kebersihan, sterilitas alat dan bahan, kerjasama antar staf laboratorium, sistem dokumentasi pekerjaan serta semua sarana prasarana. (Maftuchah, dkk., 2014).

1. Pengenalan Beberapa Bagian Ruangan Laboratorium Biologi Molekuler

Dalam rangka menjamin kualitas hasil pengujian, tata ruang laboratorium dibuat sedemikian rupa agar kontaminasi dapat diminimalkan. Laboratorium biologi molekuler minimal terdiri dari ruang preparasi, ruang kuantitasi DNA, ruang amplifikasi dan ruang dokumentasi. Secara lebih rinci beberapa ruangan yang diperlukan untuk keberhasilan pelaksanaan pekerjaan/kegiatan di laboratorium biologi molekul di antaranya sebagai berikut:
a. Ruang Bahan Kimia atau Lemari Bahan Kimia

Selain bahan kimia yang utuh (masih dalam kemasan/ botol yang asli), ada pula bahan kimia yang disimpan dalam bentuk stok. Informasi yang lengkap perlu dicantumkan pada masing-masing botol larutan stok meliputi: (1) jenis bahan kimia, (2) konsentrasi stok, (3) tanggal pembuatan dan (4) identitas pembuat. Lemari tempat penyimpanan larutan stok harus dipisah dengan lemari untuk bahan kimia yang masih utuh.

b. Ruang steril

Berbagai aktivitas yang dilakukan pada kegiatan analisis molekuler memerlukan kondisi sterilitas tinggi untuk mencegah terjadinya kontaminasi. Ruang steril dipergunakan untuk melaksanakan pekerjaan yang memerlukan sterilitas tinggi tersebut. Jika lokasi terbatas, maka fungsi ruang steril dapat digantikan dengan penggunaan laminar air flow cabinet. Dalam pemakaianannya, harus dipisahkan antara laminar air flow cabinet untuk pekerjaan yang memerlukan sterilitas tinggi (misalnya, kultur sel, kultur jaringan, preparasi larutan dan lain-lain) dengan laminar air flow cabinet...
untuk pekerjaan yang menggunakan mikroba (bakteri, jamur, virus dan lain-lain) untuk mencegah terjadinya kontaminasi.

Gambar 6.15 Beberapa Contoh Ruang Steril

c. Ruang Kerja dan Meja Kerja (Bench)
Gambar 6.16 Beberapa Bagian Ruangan Kerja di Laboratorium Biologi Molekuler

Dalam setiap kegiatan, seorang pelaksana laboratorium biasanya menggunakan meja kerja yang terpisah dengan pelaksana yang lain. Hal ini perlu dilakukan untuk mencegah tercampurnya bahan kimia, peralatan yang dipergunakan, dan memudahkan dalam menangani pekerjaan yang dilakukan.

d. Ruang Analisis

Ruang analisis, adalah ruangan yang diperuntukkan bagi penempatan peralatan laboratorium yang berguna bagi keperluan analisis. Beberapa peralatan yang biasanya ditempatkan pada ruang analisis, antara lain: spektrofotometer, mikroskop, kromatografi gas, komputer, Mesin PCR (Thermal Cycler) dan lain-lain. Gambar 6.15 Contoh beberapa peralatan yang terdapat di ruang analisis.

Gambar 6.17 Beberapa Contoh Peralatan di Ruang Analisis
e. Lemari Alat

Gambar 6.18 Beberapa Contoh Lemari Alat

f. Tempat penyimpanan Biakan Mikroba

Seringkali dalam kegiatan yang berkaitan dengan pemakaian bakteri diperlukan proses penyimpanan mikroba. Untuk penyimpanan mikroba sementara (dalam waktu singkat), biakan mikroba dalam media padat seringkali disimpan di kulkas pada suhu 4°C. Akan tetapi, untuk penyimpanan yang relatif lama, dapat dibuat stok gliserol 16-20% dari biakan mikroba tersebut dan disimpan pada freezer dengan suhu hingga -40°C.

Gambar 6.18 Tempat Penyimpanan Biakan Mikroba
g. Ruang Kultur Sel atau Kultur Jaringan

Pada beberapa pekerjaan molekuler yang melibatkan sel atau jaringan tanaman sebagai objeknya, maka diperlukan ruang steril untuk ruang kultur sel atau jaringan tanaman. Ruangan tersebut biasanya dilengkapi dengan rak-rak kultur dan beberapa peralatan antara lain: termometer ruangan, pengatur suhu, pengatur cahaya, sehingga dapat disesuaikan seperti kebutuhan objek kultur yang sedang diteliti.

Gambar 6.19 Tempat Penyimpanan Kultur Sel atau Kultur Jaringan

h. Tempat Pencucian Alat Gelas

Tempat pencucian alat gelas dipergunakan untuk mencuci dan mengerikan segala peralatan kotor yang telah dipergunakan dalam pekerjaan laboratorium. Setiap pengguna laboratorium harus membiasakan diri untuk segera mencuci segala peralatan yang kotor yang telah dipakainya. Tempat pencucian bagi alat-alat gelas yang telah terkontaminasi mikroba harus dipisahkan dengan tempat pencucian alat-alat gelas yang tidak terkontaminasi. Untuk peralatan yang mengandung bahan-bahan kimia berbahaya (misalnya: fenol, etidium bromide, akrilamid, silver nitrat, dan lain-lain) sebaiknya dicuci pada tempat yang terpisah.

Gambar 6.20 Tempat Pencucian Alat Gelas
i. Pembuangan limbah

Pembuangan limbah harus diatur sedemikian rupa terutama untuk limbah yang berbahaya. Limbah fenol etidium bromide, akrilamid, silver nitrat, tidak boleh dibuang secara langsung ke tempat pencucian. Limbah semacam ini harus ditampung terlebih dahulu di suatu tempat atau dalam botol penampungan khusus. Gel elektroforesis yang mengandung limbah berbahaya, tidak boleh langsung dibuang ke tempat sampah, tetapi harus dicuci dulu dengan air terlebih dahulu kemudian dimasukkan ke dalam kantung plastik bersama segala bahan yang terkontaminasi (kertas tissue, sarung tangan, dan lain-lain). Limbah berbahaya tersebut hendaknya ditampung dalam tempat khusus sebelum dimusnahkan. (Maftuchah, dkk., 2016).

2.2 Pengenalan Peralatan Di Laboratorium Biologi Molekuler

Setelah mengenal beberapa bagian ruangan di laboratorium, selanjutnya teknisi/teknisi ahli laboratorium harus mengenal peralatan yang diperlukan di laboratorium biologi molekuler. Adapun peralatan yang diperlukan di antaranya sebagai berikut serta sudah dilengkapi dengan gambar dari masing-masing jenis peralatannya.

1) Sentrifus (Centrifuge)

Sentrifus merupakan suatu alat yang dipergunakan untuk memisahkan larutan, mengendapkan suatu zat terlarut (seperti DNA, RNA, sel dengan komponen-komponen penyusunnya dalam suatu suspensi, dan lain-lain) atau untuk mengumpulkan larutan yang terdapat di dinding tabung (Effendorf atau tabung reaksi) ke dasar tabung. Dalam pemakaian sentrifus persyaratan utama yang harus diperhatikan adalah kesetimbangan dari bahan dan alat yang akan disentrifugasi.

Dalam pekerjaan molekuler dikenal berbagai macam dan ukuran sentrifus. Untuk cairan yang jumlahnya sedikit (kurang dari 1,5 mL) dapat dipergunakan sentrifus mikro (microcentrifuge). Sentrifus mikro dapat dibedakan ke dalam sentrifus yang berpendingin (refrigerated microcentrifuge) dan tidak berpendingin. Di samping itu, sentrifus mikro juga dapat dibedakan berdasarkan kecepatan putaran rotornya. Semakin cepat putarannya maka kemampuan suatu partikel untuk mengendap akan semakin mudah. Kecepatan suatu putaran (khususnya sentrifus) diukur dalam satuan gravitasi atau putaran per detik (rpm). Untuk sentrifugasi cairan dengan volume lebih dari 10 mL maka dikenal adanya ukuran sentrifuge yang lebih besar. Untuk sentrifuge yang berukuran besar ini juga ada yang berpendingin maupun tidak berpendingin. Di samping itu kecepatan putaran maksimum rotornya juga berbeda-beda seperti sentrifus mikro sentrifus dengan kecepatan tinggi dinamakan ultracentrifuge yang biasanya dilengkapi dengan pendingin.
2) Perangkat Elektroforesis

3) Biosafety Cabinet
Komponen utama biosafety cabinet HEPA (High Efficiency Particulate Air) dan ULFA (Ultra Low Penetration Air), merupakan jantung dari Biosafety Cabinet terbuat dari filter tipe kering berbentuk mikrofiber borosilikat lembaran tipis seperti kertas. Fungsinya menyaring debu, asap, bakteri, jelaga, serbuk sari dan partikel radioaktif).
4) Mesin PCR (PCR Thermal Cycler)

Mesin PCR merupakan suatu alat yang dipergunakan untuk mengamplifikasi atau menggandakan untaian basa-basa DNA yang dibatasi oleh pasangan primer pengapitnya melalui pengaturan suhu dan penggunaan enzim tahan panas tinggi. Dalam proses amplifikasi tersebut, mesin PCR akan bekerja secara otomatis sesuai permintaan pengaturan suhu untuk tahap denaturasi, annealing maupun ektensi/ elongasi serta berapa siklus yang diperlukan sampai dengan proses PCR selesai.

5) Pipet Mikro

Pipet dimaksudkan alat untuk mengambil larutan dari suatu tempat ke tempat lain dalam jumlah tertentu secara akurat. Alat ini diperlukan dalam teknik PCR untuk mengambil larutan atau suspensi dengan ketepatan yang sangat tinggi dan volume yang relatif kecil (dalam µL).
Dalam pemakaian pipet mikro perlu diperhatikan kisaran volume yang sesuai untuk pipet yang bersangkutan. Angka yang tercantum di dalam pipet menunjukkan volume maksimum yang dapat diambil pemilihan ukuran pipet dan tips pipet mikro tergantung pada volume yang akan diambil. Misalnya untuk mengambil volume 80 µL, kita gunakan pipet mikro dengan kisaran 10-100 µL. Pengambilan bisa dengan pipet mikro yang 1000 µL, tetapi kurang akurat. Demikian pula dapat dilakukan dengan pipet ukuran 0-10 µL, tetapi harus diulang beberapa kali. Hal tersebut dapat menyebabkan kesalahan yang cukup besar karena dengan pengambilan berulang kali dapat terdapat kesalahan setiap kali pemipetan walaupun dengan kesalahan yang sangat kecil.

Mengingat volume larutan yang diambil biasanya berukuran sangat kecil (dalam satuan mikroliter), maka alat tersebut sebenarnya telah dirancang sedemikian rupa sehingga tingkat ketepatannya sangat tinggi. Ada berbagai cara dalam penggunaan pipet yang harus diikuti sehingga kekurangtepatan dalam pengambilan dapat dihindari. Ukuran tips yang digunakan juga harus sesuai dengan kriteria batasan volume pada pipet yang akan digunakan.

Untuk menghindari terjadinya kontaminasi dari satu larutan ke larutan yang lain, maka setiap pengambilan harus menggunakan ujung pipet yang baru dan steril. Sterilisasi mikropipet hanya dilakukan pada ujung pipet dan bukan pada pipet mikro secara keseluruhan. Ujung pipet dapat disterilisasi dengan autoclave pada suhu 120°C selama 20 menit. Pada kasus tertentu seluruh pipet harus disterilisasi, tetapi harus diperhatikan bahwa kebanyakan jenis pipet mikro tidak dapat disterilisasi dengan autoclave. Umumnya masing-masing merek memberikan kode warna yang berbeda pada tips yang diproduksi sesuai dengan kisaran volume tips yang bersangkutan.

6) Tabung (tubes)

Tabung mikro (micro tubes) dipergunakan dalam berbagai proses di laboratorium molekuler termasuk proses PCR dalam berbagai volume. Dikenal berbagai macam ukuran tabung, mulai ukuran kecil sampai besar, di antaranya ukuran 0,5 mL; 1,5 mL; 2,0 mL. (Maftuchah, 2014).
7) Shaker

Berbagai aktivitas kultur mikroba dan kultur sel dalam media cair seringkali dilakukan kegiatan penggoyangan media. Shaker merupakan peralatan yang berfungsi untuk membantu penggoyangan media kultur mikroba yang sudah diinokulasi dalam waktu dan kecepatan. Penggoyangan berfungsi untuk menjaga homogenitas selama kegiatan kultur tersebut sehingga diperoleh pertumbuhan optimal dari kultur mikroba tertentu untuk menghasilkan metabolit yang diharapkan, misalnya untuk produksi enzim, antimikroba, vitamin dan lain-lain.

8) Inkubator

Inkubator merupakan suatu peralatan yang digunakan untuk proses inkubasi sesuai dengan temperatur yang diinginkan dalam proses inkubasi tersebut. Proses inkubasi sering diperlukan dalam proses ekstraksi/ isolasi DNA, plasmid, enzim restriksi, analisis Southern blot, pertumbuhan mikroba dan-lain-lain.

Apabila dalam proses inkubasi tersebut harus disertai dengan penggoyangan media kultur mikroba, maka aktivitas dapat dilakukan dengan peralatan yang disebut shaker inkubator.
9) *Rotator* / Rotary shaker

Rotator merupakan alat yang yang dipergunakan sebagai pencampur larutan secara rotasi. Alat ini sering diperlukan dalam proses ekstraksi DNA maupun RNA, fungsinya adalah agar larutan tercampur secara merata.

10) Spektrofotometer

Spektrofotometer adalah perangkat yang dapat dipergunakan untuk mengukur konsentrasi DNA serta kemurnian DNA. Peralatan ini juga dapat dipergunakan untuk mengukur kerapatan sel dalam aktivitas yang berkaitan dengan kultur mikroba.
11) Vortex

Vortex adalah suatu alat yang dipergunakan untuk membantu pencampuran larutan dalam proses ekstraksi DNA, sehingga segala bahan padat dapat tercampur dengan pelarutnya secara sempurna.

12) UV Crosslinker

UV crosslinker dipergunakan untuk memindahkan atau memfiksasi potongan DNA dari gel ke membran. Peralatan ini digunakan pada proses analisis Shouthern blot maupun Western blot.
13) Gel documentation dengan UV Transiluminator

Gel documentation (Geldoc) dengan UV Transiluminator dipergunakan untuk membantu mendeteksi pita-pita DNA hasil separasi (running) elektroforesis, sehingga pita DNA yang teramati dengan sinar UV dapat langsung direkam melalui koneksi langsung dengan komputer.

14) Waterbath

Waterbath adalah suatu alat yang digunakan untuk memanaskan larutan yang ditempatkan dalam alat gelas atau tabung reaksi. Masing-masing tipe waterbath memiliki kisaran suhu pemanasan tertentu.
15) Hotplate
Hotplate merupakan suatu alat yang digunakan untuk memanaskan suatu larutan dalam proses pembuatan media atau pembuatan pereaksi (reagen). Untuk membantu agar homogenitas larutan tersebut cepat tercapai, maka perangkat ini dilengkapi dengan stirrer yang akan berfungsi sebagai pengaduk.

16) Microwave Oven
Microwave Oven merupakan suatu alat pemanas yang dipergunakan dalam proses pembuatan gel atau untuk mencairkan gel yang telah disimpan dalam refrigerator.
17) **Oven**

Oven digunakan untuk mengerlingkan alat-alat gelas pada temperature 60°C dan dapat digunakan untuk mensterilkan alat gelas pada temperature 120°C.

18) **Analytical Balance (Timbangan Analitik)**

Timbangan analitik adalah suatu peralatan yang dipergunakan untuk menimbang bahan-bahan kimia yang diperlukan pada proses pembuatan media, pembuatan stok larutan, dan lain-lain. Biasanya digolongkan berdasarkan kapasitas dan tingkat ketelitian maksimumnya. Timbangan analitik dengan tingkat ketelitian tinggi biasanya memiliki kapasitas maksimum yang rendah, sebaliknya timbangan analitik dengan kapasitas maksimum tinggi memiliki tingkat ketelitian lebih rendah.

19) *Freeze dryer*
Dalam beberapa jenis pekerjaan di laboratorium molekuler seringkali diperlukan kegiatan pengeringan dalam suhu dingin yang terkontrol. Alat freeze dryer memiliki kisaran suhu maksimal-minimal yang berbeda-beda, sehingga perlu disesuaikan dengan kebutuhan laboratorium dan aktivitas analisis yang dilaksanakan.

20) *Autoclave*
Autoclave di laboratorium molekuler dipergunakan untuk sterilisasi alat gelas, mikrotip, mikrotube, air, larutan pereaksi dan sebagainya. Prinsip sterilisasi dengan autoclave adalah menggunakan uap panas bertekanan tinggi. Biasanya sterilisasi dengan menggunakan peralatan ini dilakukan pada suhu 120°C selama 15-20 menit. Kapasitas volume autoclave sangat beragam. Sumber panas untuk autoclave dapat berasal dari listrik dan ada pula yang berasal dari sumber lain seperti LPG.

21) *pH meter*
pH meter merupakan peralatan yang digunakan untuk pengukuran pH larutan. Alat ini di laboratorium molecular sangat diperlukan pada proses pembuatan media atau pembuatan larutan stok.
22) Mikroskop

23) Mesin sekuenser
Mesin sekuenser adalah suatu peralatan yang digunakan untuk mensekuen segmen DNA dengan panjang tertentu, sehingga pelaksana laboratorium dapat mengetahui urutan basa-basa DNA-nya.

24) Refrigerator dan Freezer
Refrigerator dan Freezer sangat diperlukan dalam laboratorium molekuler untuk penyimpanan reagen atau bahan-bahan kimia, larutan stok, serta biakan mikroba, yang memerlukan penyimpanan pada suhu dingin. Pada freezer dengan tipe khusus, suhu freezer dapat diatur sesuai kebutuhan.
25) Termos Nitrogen Cair

Termos nitrogen cair, merupakan alat yang digunakan untuk menyimpan nitrogen cair yang banyak diperlukan dalam proses isolasi DNA. Untuk kepentingan penyimpanan nitrogen cair, masing-masing tipe termos nitrogen cair mempunyai volume yang bervariasi, sedangkan untuk kepentingan bekerja, biasanya digunakan ukuran termos kecil (ukuran 2,5 - 5 liter).

26) Alat-alat gelas

Latihan

1) Jelaskan ruangan laboratorium yang harus ada di laboratorium Biologi Molekuler?
2) Jelaskan peralatan utama yang harus ada di laboratorium biologi molekuler?

Petunjuk Jawaban Latihan

Untuk membantu Anda dalam mengerjakan soal latihan tersebut silakan pelajari kembali materi tentang:
1) Pengenalan Ruangan di Laboratorium Biologi Molekuler
2) Pengenalan peralatan di Laboratorium Biologi molekuler.

Ringkasan

1. Dalam rangka menjamin kualitas hasil pengujian, tata ruang laboratorium dibuat sedemikian rupa agar kontaminasi dapat diminimalkan. Laboratorium biologi molekuler minimal terdiri dari ruang preparasi, ruang kuantitasi DNA, ruang amplifikasi dan ruang dokumentasi.

2. Berbagai pengetahuan dasar khususnya tentang teknik pemakaian peralatan secara tepat dalam suatu pekerjaan di laboratorium sangat diperlukan untuk menghindari terjadinya kesalahan-kesalahan yang dapat merugikan, baik bagi kepentingan penelitian pelaksana/peneliti itu sendiri dan/atau kesehatan serta keselamatan pengguna laboratorium. Peralatan yang dipergunakan di laboratorium molekuler dapat dikelompokkan menjadi peralatan standar dan peralatan pendukung. Peralatan standar umumnya berharga sangat mahal, sehingga pemakaian peralatan tersebut mencegah terjadinya kerusakan yang diakibatkan oleh kesalahan pemakaian.

3. Keberhasilan suatu pekerjaan laboratorium biomolekuler sangat ditentukan oleh berbagai hal yang kompleks antara lain, jenis peralatan yang digunakan, bahan-bahan kimia, larutan stok, prosedur pelaksanaan pekerjaan, ketertiban pelaksanaan, ketepatan waktu, hingga kebersihan, sterilitas alat dan bahan, kerjasama antar staf laboratorium, sistem dokumentasi pekerjaan serta semua sarana prasarana.
Tes 2

1) Informasi yang lengkap perlu dicantumkan pada masing-masing botol larutan stok meliputi hal-hal berikut, kecuali:
 A. jenis bahan kimia
 B. konsentrasi stok
 C. tanggal pembuatan
 D. identitas supervisor.

2) Keberhasilan suatu pekerjaan laboratorium biomolekuler sangat ditentukan oleh berbagai hal yang kompleks berikut ini, kecuali:
 A. jenis peralatan yang digunakan
 B. bahan-bahan kimia, larutan stok,
 C. prosedur pelaksanaan pekerjaan
 D. kerja mandiri masing-masing staf laboratorium

3) Bagian ruangan laboratorium yang dipergunakan untuk melaksanakan pekerjaan yang berhubungan dengan spesimen mikroorganisme adalah:
 A. Ruang analisis
 B. Ruang steril
 C. Ruang bahan kimia
 D. Ruang penyimpanan kultur mikroba

4) Alat yang sering dipergunakan untuk memisahkan larutan, mengendapkan suatu zat terlarut (seperti DNA, RNA, sel dengan komponen-komponen penyusunnya dalam suatu suspenisi, dan lain-lain) atau untuk mengumpulkan larutan yang terdapat di dinding tabung (Effendorf atau tabung reaksi) ke dasar tabung adalah:
 A. Shaker
 B. Vortex
 C. Sentrifuge
 D. Waterbath

5) Alat laboratorium yang merupakan suatu alat pemanas dalam proses pembuatan gel atau untuk mencairkan gel yang telah disimpan dalam refrigerator adalah:
 A. Oven
 B. Microwave
 C. Hotplate
 D. Mesin thermal

6) Penyimpanan mikroba dalam waktu yang relatif lama, dibutuhkan perlakuan....
 A. biakan mikroba dalam media padat disimpan di kulkas pada suhu 4oC
 B. biakan mikroba dalam media padat disimpan di kulkas pada suhu -40 oC
C. dibuat stok gliserol 16-20% dari biakan mikroba tersebut dan disimpan pada freezer dengan suhu hingga -40oC
D. dibuat stok gliserol 16-20% dari biakan mikroba tersebut dan disimpan pada freezer dengan suhu hingga 4oC

7) Ruangan yang diperuntukkan bagi penempatan peralatan laboratorium yang berguna bagi keperluan analisis....
 A. Ruang analisis
 B. Ruang kerja
 C. Ruang steril
 D. Ruang bahan kimia

8) Dibawah ini cara penggunaan timbangan analitik yang benar, kecuali:
 A. Penimbangan bahan kimia sebaiknya diletakkan di atas aluminium foil atau kertas minyak yang bersih
 B. Alat pembantu yang diperlukan untuk mengambil bahan dari kemasannya (misalnya spatula/ sendok plastic) harus selalu dibersihkan setiap akan digunakan, untuk menghindari kontaminasi dari bahan kimia
 C. Sebelum dan setelah penimbangan, alat penimbang harus di disinfeksi terlebih dahulu
 D. Sebelum dan setelah penimbangan, alat penimbang harus dalam keadaan bersih

9) Suatu alat yang dipergunakan untuk memisahkan larutan, mengendapkan suatu zat terlarut (seperti DNA, RNA, sel dengan komponen-komponen penyusunnya dalam suatu suspensi, dan lain-lain) atau untuk mengumpulkan larutan yang terdapat di dinding tabung ialah....
 A. Rotator
 B. Shaker
 C. Vortex
 D. Sentrifuge

10) Alat yang digunakan untuk mengerikan alat-alat gelas pada temperature 60oC dan mensterilkan alat gelas pada temperature 120oC adalah...
 A. Oven
 B. Waterbath
 C. Autoclave
 D. Inkubator
Kunci Jawaban Tes

Tes 1
1. C
2. A
3. D
4. A
5. C
6. B
7. A
8. D
9. D
10. B

Tes 2
1. D
2. D
3. B
4. C
5. B
6. C
7. A
8. C
9. D
10. A
Glosarium

Hibridisasi : Pembentukan satu atau lebih individu hibrid.
Hibridisasi in situ : Hibridisasi antara pelacak DNA atau RNA pada preparat sitologis.
Hibridisasi dot : Target asam nukleat (DNA atau RNA) ditotolkan pada membran dan keberadaan target dilacak dengan pelacak DNA atau RNA berlabel.
Fraksinasi sel : Perusakan sel dan pemisahan organelnya dengan cara sentrifugasi.
Komplementer : Dua gen yang bekerja sama saling melengkapi ekspresi suatu karakter.
DNA polimerase : Enzim yang mengkatalis pemanjangan DNA baru pada garpu replikasi dengan cara penambahan nukleotida ke rantai yang sudah ada.
Southern blotting : Suatu teknik hibridisasi yang memungkinkan untuk menentukan kehadiran urutan nukleotida tertentu dalam sampel DNA.
Western blotting : Teknik untuk mendeteksi protein spesifik di dalam sampel homogenat atau ekstrak jaringan
Northern blotting : Modifikasi dari metode Southern dengan target RNA yang telah dipisahkan dengan elektroforesis gel agarose dengan menggunakan pelacak DNA berlabel.
Polimorfisme : Keberadaan bersama dua atau lebih bentuk individu yang lebih jelas terlihat (karacter polimorfik) dalam populasi yang sama.
Probe asam nukleat : Dalam teknologi DNA, suatu molekul asam nukleat beruntai tunggal yang digunakan untuk menandai (melabeli) suatu urutan nukleotida spesifik dalam suatu sampel asam nukleat. Molekul probe ini membentuk ikatan hidrogen dengan urutan komplementer di mana saja urutan ini terjadi; pelabelan dengan radioaktif atau pelabelan lainnya pada probe akan memungkinkan pendeteksian lokasinya.
Probe DNA : Suatu segmen asam nukleat yang disintesis secara kimiawi dan dilabel dengan radioaktif yang digunakan untuk menemukan suatu gen yang diinginkan dengan cara membuat ikatan hidrogen dengan suatu urutan komplementer.
Reaksi rantai polimerase (polymerase chain reaction, PCR) : Suatu teknik untuk perbanyakan DNA in vitro dengan cara menginkubasi dengan primer khusus, molekul DNA, polimerase, dan nukleotida.
Mutasi : Perubahan yang jarang terjadi dalam DNA gen yang akhirnya menciptakan keragaman genetik.
Spektrofotometer : Suatu instrumen yang mengukur porsi dari cahaya dengan panjang gelombang yang berbeda yang diserap dan dihantarkan oleh suatu larutan berpigmen.
Daftar Pustaka

www.flogentec.com/applications-protocols-experiences/fish/.
PENDAHULUAN

Saudara mahasiswa, pada bab 6 Anda telah mempelajari tentang Teknik Dasar Analisis Biologi Molekuler. Materi pada bab 6 tersebut bertujuan agar Anda sebagai Ahli Teknologi Laboratorium Medik (ATLM) dapat memiliki pengetahuan tentang teknik dasar analisis biologi molekuler. Di antara teknik dasar analisis biologi molekuler yang sudah banyak dilakukan di fasilitas pelayanan kesehatan terutama di beberapa rumah sakit dan laboratorium klinik, adalah teknik amplifikasi Asam Nukleat yaitu Teknik Polymerase Chain Reaction (PCR), yang akan dipelajari pada bab 7 ini.

Sebelum melaksanakan proses PCR, seorang ATLM penting untuk melakukan teknik isolasi DNA atau RNA yang benar agar diperoleh sampel DNA atau RNA yang berkualitas baik. DNA dan RNA yang diisolasi berasal dari berbagai sumber baik prokaryot maupun eukaryot. Apabila sampel DNA atau RNanya berkualitas baik, maka akan berpengaruh baik terhadap proses PCR dan identifikasi hasil PCR. Terkait pentingnya pemahaman yang baik tentang teknik isolasi asam nukleat bagi seorang ATLM, maka pada bab 7 ini, Anda akan mempelajari tentang “Teknik Isolasi Asam Nukleat”.

Sebelum mempelajari topik tersebut, alangkah baiknya apabila Anda telah mempelajari topik-topik sebelumnya terutama terkait asam nukleat dan teknik dasar analisis biologi molekuler. Mari kita refleksi terlebih dahulu beberapa hal yang perlu Anda ingat kembali untuk mengantarkan kita menuju pembelajaran materi Bab 7 ini.

Komponen utama kromosom pada eukaryotik adalah molekul DNA dan protein histon. Protein histon ini bersifat basa, sehingga dapat menetralkan sifat asam dari DNA. DNA pada sel eukariotik terdapat didalam nukleus. Sebagian besar DNA pada sel hewan
terdapat didalam inti sel dan sebagian kecil ada di dalam mitokondria. Sedangkan pada sel tumbuhan terdapat pada nukleus, mitokondria juga kloroplas.

Sel prokariotik memiliki DNA yang tersebar di dalam sel dan DNA yang tidak berasosiasi dengan protein histon sehingga DNA terurai di dalam sitoplasma. DNA pada sel prokaryotik berbentuk rantai single helix. Beberapa DNA tambahan pada bakteri dapat ditemukan di organel bernama plasmid.

Saat ini telah dikembangkan teknologi pemeriksaan di laboratorium berbasis biologi molekuler, suatu metode diagnostik yang cepat dan akurat dengan tingkat spesifisitas dan sensitivitas yang tinggi. Berbagai teknologi analisis di tingkat molekuler diawali dengan tahapan utama yaitu isolasi asam nukleat (DNA atau RNA).

Pada Bab 7 ini akan dijelaskan tentang “Teknik Isolasi Asam Nukleat” terutama teknik isolasi DNA atau RNA yang akan digunakan untuk proses amplifikasi (PCR). Adapun ruang lingkup pembelajaran tentang Bab 7 ini meliputi 3 topik yaitu: (1) Teknik Isolasi DNA dan (2) Teknik Isolasi RNA.

Dengan mempelajari bab ini, Anda sebagai seorang ATLM, diharapkan mampu:

1. Membandingkan teknik isolasi DNA
2. Membandingkan teknik isolasi RNA

Pembahasan selengkapnya tentang materi pada Bab 7 ini, mari kita simak bersama topik-topik berikut ini.
Silakan Anda perhatikan gambar di atas. Pada gambar tersebut kita melihat terdapat beberapa sumber DNA atau RNA. Berdasarkan pengalaman Anda, tuliskan jenis-jenis spesimen (bahan pemeriksaan) dari beberapa sumber DNA atau RNA dari yang dapat digunakan untuk pemeriksaan di laboratorium biologi molekuler.

Setelah Anda mencoba menjawab pertanyaan di atas, silakan pelajari dan cermati materi berikut ini.

DNA atau RNA yang akan diamplifikasi dengan metode PCR dapat diisolasi dari berbagai sumber. Metode isolasi DNA atau RNA dapat dilakukan dengan berbagai macam cara antara lain seperti yang dijelaskan oleh Sambrook et.al (1989) dalam Yuwono (2009). DNA atau RNA yang akan digunakan dalam PCR tidak harus dalam kemurnian yang tinggi seperti yang akan digunakan untuk kloning. Tetapi dalam beberapa hal, seringkali DNA atau RNA yang akan diamplifikasi harus dimurnikan terlebih dahulu.

Tujuan utama isolasi asam nukleat adalah untuk memisahkan DNA atau RNA dari bahan lain seperti protein, lemak, dan karbohidrat. Dengan memperoleh DNA atau RNA yang murni, maka akan diperoleh bahan DNA dan atau RNA untuk digunakan dan dimanfaatkan sebagai sampel untuk pemeriksaan analisis molekuler tahap selanjutnya sesuai tujuan tertentu, misalnya untuk dilanjutkan proses amplifikasi untuk mengidentifikasi atau mendeteksi ada tidaknya gen pada suatu penyakit infeksi tertentu.
atau gen resisten terhadap suatu antibiotik tertentu (MDR) dan lain-lain. Tahapan analisis biomolekuler menggunakan teknik PCR disajikan pada Gambar 7.2 berikut ini.

Gambar 7.2 Tahapan analisis biomolekuler menggunakan teknik PCR

DNA atau RNA yang akan diamplifikasi dengan metode PCR dapat diisolasi dari berbagai sumber baik eukaryot maupun prokaryot. Metode isolasi DNA atau RNA dapat dilakukan dengan berbagai macam cara antara lain seperti yang dijelaskan oleh Sambrook et.al (1989) dalam Yuwono (2009). DNA atau RNA yang akan digunakan dalam PCR tidak selalu harus dalam kemurnian yang tinggi seperti yang akan digunakan untuk kloning. Tetapi dalam beberapa hal, seringkali DNA atau RNA yang akan diamplifikasi harus dimurnikan terlebih dahulu. Berikut ini mari kita pelajari bersama penjelasan terperinci tentang “Teknik Isolasi DNA”.

Isolasi DNA merupakan tahapan pekerjaan awal yang harus dilakukan dalam berbagai pemeriksaan analisis DNA. Keberhasilan proses isolasi DNA seringkali sangat menentukan hasil pekerjaan selanjutnya. Proses ekstraksi untuk mendapatkan DNA berkualitas tinggi merupakan satu kaidah dasar yang harus dipenuhi dalam analisis molekuler. Berbagai analisis biologi molekuler memerlukan hasil isolasi DNA dengan tingkat kemurnian dan kualitas yang baik. DNA hasil isolasi harus terbebas dari berbagai kontaminan seperti protein dan RNA yang dapat menggangu berlangsungnya proses PCR. Oleh karena itu, metode isolasi DNA yang tepat sangat diperlukan untuk mendapatkan DNA dengan kualitas dan kuantitas yang baik.

Berbagai teknik ekstraksi DNA telah dikembangkan dari prinsip dasar sehingga saat ini muncul berbagai teknik ekstraksi dan purifikasi DNA dalam bentuk kit yang prosesnya akan lebih mudah, cepat, dan sederhana.

Setelah memperoleh gambaran tentang teknik isolasi asam nukleat di atas, silakan Anda cermati tentang prinsip isolasi DNA berikut ini.

1. **Prinsip Isolasi DNA**

Ekstraksi dan purifikasi DNA pada dasarnya merupakan serangkaian proses pemisahan DNA dari komponen-komponen sel lainnya. Ekstraksi DNA pada organisme eukaryot dilakukan melalui proses penghancuran dinding sel (lysis of cell wall), penghilangan protein dan RNA (cell digestion), dan pengendapan DNA (precipitation) dan

Isolasi DNA diperlukan dengan tujuan untuk memisahkan DNA dari bahan lain seperti protein, lemak, dan karbohidrat. Terdapat 3 prinsip utama dalam isolasi DNA yakni 1). penghancuran (lisis), 2). ekstraksi atau pemisahan DNA dari bahan padat seperti selulosa dan protein, serta 3). pemurnian DNA.

Secara umum, tahap isolasi DNA dimulai dari pengambilan sampel, pelisisan membran dan/atau dinding sel, ekstraksi DNA, presipitasi DNA, pemurnian DNA, dan pengawetan DNA. Isolasi DNA juga berfungsi sebagai media pembelajaran genetik, dapat mengetahui kelainan genetik yang diderita, dapat mengetahui agen penyebab penyakit infeksi, dan lain-lain. (Yuwono, 2006.; Soedjadi, 2008.; Maftuchah, 2014).

Prinsip dasar isolasi DNA di atas diaplikasikan dengan berbagai macam tahapan ekstraksi dan purifikasi DNA dengan berbagai modifikasi disesuaikan dengan kebutuhan atau jenis sampel yang diekstraksi. (Unang Supratman, dkk., 2017).

Untuk memperoleh isolat DNA dari spesimen ada beberapa hal yang harus dilakukan dengan benar, yaitu:

1. Pemecahan dinding sel sel atau jaringan yang akan diisolasi DNA-nya, seperti sel sel darah merah, kultur sel bakteri, dan jaringan hewan atau tanaman. Sel-sel dari kultur sel atau bakteri disentrifugasi dengan kecepatan 8.000-10.000 rpm selama 10 menit.

Pemecahan dinding bakteri dapat dilakukan dengan 2 cara, yaitu:
 a. Secara fisik: sel dipecah dengan kekuatan mekanik atau resonansi

2. Debris sel dipisahkan dari larutan DNA.

3. Presipitasi RNA dan protein agar diperoleh DNA yang murni.
4. Presipitasi DNA dengan etanol dingin.
5. Pemurnian DNA dari ekstrak sel dengan menggunakan salah satu bahan kimia seperti berikut ini: fenol; fenol : kloroform; isopropanol; fenol:kloroform:isooamilalkohol.
7. Pemisahan DNA dari molekul RNA dan protein dapat dilakukan dengan menggunakan densitas gradien sentrifugasi Cesium Chlorida (CsCl), dengan cara ini DNA akan terpisah pada band yang berbeda dengan protein dan RNA bahkan antara DNA linier dan DNA sirkuler. Selain itu, dengan menggunakan garam dengan konsentrasi tinggi, seperti 0,25 M natrium asetat atau 0,1 M natrium klorida.
8. Presipitasi akhir DNA dapat dilakukan dengan menggunakan etanol dingin di bawah kondisi ionik yang kuat. Dan dicuci dengan EtOH (etanol) 70%.
9. Pelet DNA dilarutkan dengan buffer TE atau ddH₂O steril.

Preparasi DNA bakteriophage atau virus, sedikit agak berbeda dengan sel-sel bakteri, yaitu:
1. Phage diisolasi dari kultur sel-sel yang terinfeksi.
2. Dilakukan sentrifugasi dengan ultra sentrifugasi, sampai diperoleh supernatan berisi phage dan terpisah dari kultur selnya (dalam bentuk endapan atau pelet).
3. Tambahkan poli etilen glikol (PEG) + NaCl untuk presipitasi partikel phage, sentrifugasi dan diperoleh pelet phage murni.

Untuk preparasi DNA dari sel-sel atau jaringan tanaman, yang harus diperhatikan adalah jaringan tanaman diperlakukan terlebih dahulu dalam nitrogen cair (NO₂) dan segera dilakukan penggerusan agar diperoleh ekstrak sel yang halus. Kemudian ekstrak sel diperlakukan dengan ekstrak buffer yang dicampur dengan β-merkaptoethanol (fresh), dan selanjutnya seperti jaringan atau organisme yang lain.

Aplikasi dari isolasi DNA adalah untuk identifikasi forensik, deteksi dan identifikasi diagnostik penyakit infeksi dan kelainan bawaan. Beberapa gen tertentu dapat diproduksi secara masal untuk mengobati penyakit tertentu, dan teknologi DNA rekombinan dapat digunakan untuk rekayasa genetika. Pada bab ini pembahasan akan lebih difokuskan terhadap aplikasi diagnostik untuk mendeteksi dan mengidentifikasi suatu agen penyebab infeksi atau suatu gen penyebab kelainan bawaan (herediter).

Setelah mempelajari prinsip isolasi DNA, sub topik berikut akan membahas tentang jenis spesimen yang digunakan untuk isolasi DNA.

2. Jenis Spesimen Untuk Isolasi DNA

DNA manusia dan hewan biasanya diperoleh dari darah dan jaringan dalam. Namun DNA juga dapat diekstraksi dari semen, saliva, akar rambut, urin, dan gigi. Selain itu, spesimen untuk isolasi DNA juga dapat berasal dari kultur sel hewan, ragi, bakteri, jaringan tumbuhan dan fungi.
Kualitas hasil isolasi DNA tergantung pada kualitas spesimen yang digunakan. Hasil isolasi DNA yang baik diperoleh dengan memurnikan DNA genomik dari sel atau jaringan yang segar. Jika spesimen tidak dapat segera diproses, perlu dilakukan penyimpanan dengan kondisi khusus untuk menjaga integritas DNA. Umumnya, hasil DNA genomik akan berkurang jika sampel, terutama sampel hewan, disimpan pada suhu 2-8°C atau -20°C tanpa diawetkan sebelumnya. Selain itu, membekukan dan mencairkan ulang sampel yang beku harus dihindari karena hal ini akan mengurangi ukuran atau hasil DNA patogen (contohnya DNA virus).

Selanjutnya setelah mempelajari prinsip dan jenis spesimen untuk isolasi DNA, sub topik berikut akan membahas tentang reagen yang digunakan untuk isolasi DNA, berikut penjelasannya.

3. **Reagen Untuk Isolasi DNA**

 Metode tradisional untuk mengisolasi DNA tumbuhan ialah dengan menggunakan teknik Cetyl Trimethyl Ammonium Bromide (CTAB). Hal penting yang harus diperhatikan pada teknik CTAB yaitu pelisisan dinding sel, agar DNA dapat diamati. Pada saat pemurnian DNA, partikel lain akan dipisahkan lewat sentrifugasi dengan kloroform. Reagen yang digunakan antara lain CTAB bufer, etanol 70%, ammonium asetat, kloroform, tris-EDTA, RNase, dan isopropanol. Teknik CTAB melibatkan proses cukup rumit karena sampel harus digerus yang selanjutnya diinkubasi pada waterbath, dan terakhir disentrifugasi.

 Saat ini, isolasi DNA tumbuhan dapat dilakukan dengan teknik yang lebih modern, atau disebut dengan teknik Kit (Quick Extract Plant DNA Extraction). Kelebihan dari Metode Kit ini adalah prosedur kerja yang simpel, proses pengerjaan yang cepat, dan tidak menggunakan bahan kimia berbahaya seperti kloroform dan memerlukan penanganan yang mudah. Metode Kit tersebut hanya memerlukan satu jenis reagen dan dua kali inkubasi tanpa proses penggerusan dan sentrifugasi.

 Adapun reagen yang digunakan untuk isolasi DNA dari spesimen darah yaitu larutan pelisis eritrosit, larutan pelisis leukosit, RNAse, larutan presipitasi protein, isopropanol, etanol 70%, dan tris-EDTA (TE). Fungsi dari masing-masing reagen tersebut dalam proses isolasi DNA ialah sebagai berikut:

 1. Larutan pelisis eritrosit mengandung: NH₄Cl sebagai garam dan berfungsi sebagai pengoptimalisasi pelisisan eritrosit tanpa menyebabkan efek yang berarti pada leukosit; Ethylenediaminetetra Acetic Acid (EDTA) berfungsi sebagai perusak sel dengan cara mengikat ion metal yang mempunyai +2 (Mg²⁺ dan Ca²⁺). Ion Mg²⁺ berfungsi untuk mempertahankan aktivitas enzim nuclease yang merusak asam nukleat; KHCO₃ berfungsi sebagai larutan penyaring atau bufer; KOH digunakan untuk menaikkan pH; dan HCl digunakan untuk menurunkan pH larutan.

 2. Larutan pelisis leukosit mengandung: Tris-HCl sebagai larutan bufer; EDTA; Sodium Dodecyl Sulphate (SDS) untuk melarutkan membran dan protein yang terdenaturasi.

 3. RNAase berfungsi untuk menghancurkan RNA.
4. Larutan presipitasi protein (Hac) berfungsi untuk mengendapkan protein yang berasosiasi dengan DNA.
5. Isopropanol berfungsi sebagai medium agregasi plasmid DNA agar DNA terlihat.
6. Etanol berfungsi untuk fase pencucian DNA untuk menghilangkan isopropanol dan garam yang terkandung.
7. Tris-EDTA berfungsi sebagai larutan isotonis agar DNA tidak rusak.

Untuk melengkapi pemahaman tentang isolasi DNA, selanjutnya Anda akan mempelajari sub topik tentang peralatan untuk isolasi DNA. Silakan anda cermati.

4. **Peralatan untuk Isolasi DNA**

Penjelasan lengkap alat-alat untuk analisis biologi molekuler secara umum telah dipelajari pada Bab sebelumnya, yaitu Bab 6. Berikut ini alat-alat yang hanya digunakan untuk isolasi DNA dari spesimen darah di antaranya:

1. Mesin sentrifugasi, yaitu mesin yang didesain untuk memisahkan material bermassa di antaranya berat dengan yang ringan. Mesin sentrifugasi berputar dengan kecepatan yang sangat tinggi.
2. Tabung sentrifugasi, berfungsi sebagai tempat diprosesnya darah.
3. Vortex berfungsi untuk mencampurkan larutan yang berjumlah sedikit.
4. Mikropipet + tip dan pipet transfer berfungsi untuk mengambil larutan yang diperlukan dalam praktikum dalam satuan mikroliter (µL).
5. Tube digunakan untuk menampung sampel darah.
7. Inkubator atau waterbath digunakan untuk mengontrol temperatur, keamanan dan gencangan pada status yang tetap.
8. Sarung tangan dan masker untuk menghindari kontaminasi pada sampel sekaligus sebagai alat pelindung diri dari bahan pemeriksaan yang infeksius.

Setelah mempelajari sub topik di atas, selanjutnya Anda akan mempelajari sub topik yang paling penting untuk seorang ATLM yaitu tentang langkah kerja isolasi DNA. Silakan Anda cermati sub topik berikut ini.

5. **Langkah Kerja Isolasi DNA**

Pada sub topik berikut akan dipelajari langkah-langkah kerja isolasi DNA dari beberapa contoh spesimen, baik spesimen cairan tubuh atau jaringan manusia (darah, urine, sputum dan lain-lain) dan mikroorganisme seperti bakteri, virus, dan lain-lain. Silakan Anda simak penjelasan berikut ini.

a. Isolasi DNA dari Spesimen Darah (manusia)

Berikut ini langkah kerja isolasi DNA dari spesimen darah, silakan Anda cermati.

1) Ambil darah sebanyak 300 µL dengan menggunakan mikropipet dari ujung jari steril yang telah ditusuk dengan lanset. Lalu masukkan darah ke dalam tube dan diberi larutan pelisis eritrosit.
2) Tabung diinkubasi selama kurang lebih 10 menit, kemudian disentrifugasi selama 10 menit dengan kecepatan 2.500 rpm. Setelah itu supernatant kemudian dibuang.
3) Tambahkan lagi 4,5 mL larutan pelisis eritrosit lalu gunakan vortex untuk homogenisasi. Lalu sentrifugasi selama 10 menit dengan kecepatan 2.500 rpm. Setelah itu supernatant kembali dibuang.
4) Pelet yang didapat kemudian ditambahkan 1 mL larutan pelisis leukosit lalu tambahkan 1,5 µL RNase, lalu homogenisasi campuran tersebut dengan cara membolak-balikkan tabung.
5) Kemudian tabung diinkubasi selama 15 menit pada suhu 37°C.
6) Tambahkan 500 µL larutan presipitasi protein dan gunakan vortex untuk homogenisasi.
7) Selanjutnya tabung di sentrifugasi selama 5 menit dengan kecepatan 3.000 rpm.
8) Supernatant selanjutnya dibuang dan pelet ditambahkan 4 mL etanol 70% dingin dan dibolak-balikkan.
9) Selanjutnya tabung disentrifugasi selama 5 menit dengan kecepatan 3.000 rpm.
10) Kemudian tabung dibolak-balikkan dan DNA dikeringkan selama 15 menit.
11) Tambahkan tris-EDTA 0,5 mL, selanjutnya sampel DNA siap digunakan dan disimpan pada suhu 4°C.
12) Setelah proses isolasi selesai, kemudian dilanjutkan dengan analisis isolat DNA. Analisis DNA dapat dilakukan secara kualitatif maupun kuantitatif.

Darah diambil menggunakan lanset steril bertujuan agar darah tidak terkontaminasi dan menghindari hal-hal yang tidak diinginkan. Selanjutnya darah ditempatkan pada tube lalu ditambahkan larutan pelisis eritrosit bertujuan agar eritrosit hilang. Selanjutnya disentrifugasi agar supernatant yang berisi eritrosit yang telah lisis dan pelet yang berisi leukosit terpisah. Penambahan larutan pelisis eritrosit kedua kalinya bertujuan agar eritrosit yang masih ada dapat lisis dengan sempurna.

Penggunaan larutan pelisis leukosit berfungsi untuk melisiskan membran leukosit. Inkubasi pada waterbath berfungsi untuk optimalisasi kinerja GB (genomic binding) buffer. Lalu selanjutnya ditambahkan elution buffer untuk menghilangkan protein yang telah terdenaturasi sehingga yang tersisa hanya DNANYa.

Penambahan etanol berfungsi untuk proses pencucian DNA. Lalu tempatkan GD (genomic DNA) Column pada tube dan selanjutnya disentrifugasi. Hal ini bertujuan untuk memisahkan DNA dengan supernatant, sehingga DNA tidak tercampur dengan supernatant yang akan dibuang.

Selanjutnya GD Column diberi wash buffer untuk proses pencucian DNA dan bertujuan agar DNA yang masih menempel pada GD Column dapat mencapai bawah tabung. Setelah GD Column dipindahkan ke dalam tube yang baru, lalu diberi TE bufer atau elution bufer agar DNA tidak terdegradasi saat proses penyimpanan. Hasil yang akan didapatkan adalah larutan berwarna bening yang berisi DNA murni, tanpa adanya
komponen lain yang tidak diperlukan seperti sel darah merah maupun protein. Tahapan prosedur isolasi DNA dari spesimen darah disajikan pada Gambar 7.3.

![Gambar 7.3 Prosedur Isolasi DNA Dari Spesimen Darah](image)

Sumber foto: Yeastern Biotech Co., Ltd.

b. Isolasi DNA Spesimen Jaringan Tubuh Manusia yang Disimpan Dalam Parafin
 Metode ini terutama dilakukan untuk jaringan sel manusia yang diawetkan di dalam parafin (Wright dan Manos, 1990).

Reagen yang diperlukan

Oktana atau xilena; Etanol 100%; Aseton; Proteinase K (20 mg/mL); Bufer pencerna (50 mM Tris HCl (pH 8,5), 1 mM EDTA, 0,5% Tween 20 atau 1% Laureth 12).

Persiapan Irisan jaringan

Siapkan irisan jaringan (dengan lebar 5-10 µm), dengan menggunakan mikrotom, dari jaringan yang diawetkan. Jika memungkinkan, hilangkan parafin yang berlebihan dari sampel jaringan sebelum diiris. Potonglah irisan tersebut dan ambil dari mikrotom dalam keadaan kering. Peganglah irisan tersebut dengan tusuk gigi dan letakkan di dalam tabung mikrosentrifuge berukuran 1,5 mL. Untuk mencegah kontaminasi, sebaiknya dibersihkan dengan xilena setelah digunakan untuk menyiapkan irisan sampel jaringan yang berbeda.

Penghilangan Parafin dari Irisan Jaringan

Parafin dapat dihilangkan dari jaringan dengan cara mengekstrak irisan jaringan menggunakan oktana dua kali. Setelah itu, cucilah hasil ekstraksi tersebut dengan etanol 100% untuk menghilangkan pelarutnya. Etanol dapat dihilangkan dengan mengerahkan sampel dalam keadaan vakum atau dengan membilas menggunakan aseton.

1. Tambahkan 1 mL oktana ke dalam tabung yang berisi irisan jaringan. Tutup tabungnya kemudian campurkan pada suhu kamar selama 30 menit.
2. Lakukan sentrifugasi menggunakan mikrosentrifuga pada kecepatan penuh (13.000-16,000) selama 5 menit sehingga jaringan dan sisa-sisa parafin akan mengendap.

4. Ulangi langkah 1, 2 dan 3.

5. Tambahkan 0,5 mL etanol 100% ke dalam tabung. Tutup tabungnya dan campurkan dengan cara membalikkan tabung.

8. Ulangi langkah 5,6 dan 7. Hilangkan sebanyak mungkin etanol yang tersisa dengan menggunakan pipet Pasteur.

10. Tambahkan 100µL buffer pencerna yang mengandung 200µg/ml proteinase K ke dalam sampel jaringan yang telah diekstraksi. Jika jaringan yang digunakan cukup banyak, gunakan 200 µL buffer pencerna.

11. Inkubasikan selama 3 jam pada suhu 55°C atau pada suhu 37°C selama semalam.

12. Lakukan sentrifugasi singkat untuk menghilangkan cairan yang ada pada tutup tabung.

13. Inkubasikan pada suhu 95°C selama 8-10 menit untuk menonaktifkan proteasenya. Jangan memanaskan sampel lebih dari 10 menit.

14. Lakukan sentrifugasi selama 30 detik untuk mengendapkan sisa-sisa parafin atau jaringan. Gunakan supernatannya untuk melakukan amplifikasi dengan PCR (1-10 µL). Sampel yang tersisa dapat disimpan pada suhu -20°C.

Hasil PCR yang menggunakan sampel DNA yang diekstraksi dari jaringan yang diawetkan dalam parafin tidak seefisien hasil PCR yang menggunakan DNA yang sudah dimurnikan. Oleh karena itu perlu dilakukan modifikasi parameter amplifikasinya yaitu dengan meningkatkan waktu inkubasi pada masing-masing suhu, misalnya dari 30 detik menjadi 1 menit. Selain itu, perlu juga digunakan siklus amplifikasi yang lebih banyak, misalnya 40 siklus.

c. Isolasi DNA dari Kultur Bakteri

DNA bakteri umumnya terdiri dari DNA kromosomial (DNA genom) dan DNA plasmid.

Dengan demikian teknik isolasi dari kultur bakteri untuk memperoleh bahan DNA bisa ditujukan untuk memperoleh DNA kromosomial (DNA genom), DNA plasmid atau kedua-duanya sesuai tujuan tertentu. Pada sub topik selanjutnya Anda akan mempelajari tentang teknik isolasi DNA dari prokaryot, di antaranya dari bakteri dan virus sebagai berikut.
3.1) Isolasi DNA genom (kromosom) bakteri

Berikut ini akan dijelaskan tentang prosedur teknik isolasi pada genom (kromosom) bakteri.

1. **Isolasi DNA genom (kromosom) bakteri Metode Boiling**
 Metode ini paling banyak digunakan, karena relatif mudah, sederhana dan keberhasilan untuk memperoleh isolat DNA cukup tinggi.
 Alat dan bahan: Biosafety Cabinet; Mikropipet 10, 200 dan 1000 uL; Mikrotube 200 dan 1500 uL; Mikrosentrifuse; Waterbath/ Thermal Cycler; Freezer -80°C; PCR buffer/T E Buffer; Proteinase K; Sampel (koloni/ suspensi Bakteri).
 Prosedur:
 a. Tumbuhkan bakteri dalam media LB cair (Lactose Broth) dalam waktu 12-24 jam suhu 37°C.
 b. Ambil sebanyak 250 uL dan masukkan ke dalam 0.5/1,5 mL tabung Eppendorf.
 c. Sentrifuse 3000 rpm selama 5 menit, buang supernatan.
 d.Tambahkan 50 μL 1x PCR-buffer/ TE Buffer
 e.Tambahkan 1 μL Proteinase K (10 mg/mL).
 f. Bekukan minimal 1 jam pada -80°C agar jaringan sel rusak.
 g. Panaskan selama 1 jam pada 60°C dan didihkan selama 15 menit pada 95°C (dalam mesin PCR).
 h. Simpan suspensi DNA yang terbentuk pada -20°C atau dapat digunakan langsung untuk PCR.
 Selanjutnya akan dipelajari teknik isolasi DNA genom (kromosom) bakteri menggunakan reagen kit.

2. **Isolasi DNA genom (kromosom) bakteri menggunakan Metode Reagen Kit**
 Berikut ini salah satu prosedur umum isolasi DNA dari kultur bakteri menggunakan Presto™ Mini gDNA Bacteria Kit. Peralatan yang digunakan antara lain: tabung sentrifugasi, mikropipet, mikrotip, frezeer, vortex, mesin sentrifugasi, GD column, collectiontube, dan inkubator. Bahan yang diperlukan antara lain kultur murni bakteri, ddH2O, proteinase K, buffer TE, dan bahan dari Presto™ MinigDNA Bacteria Kit.
 Secara umum tahapan yang dilakukan ialah persiapan sampel, lisis, pengikatan DNA, pencucian DNA, dan elusi DNA. Adapun langkah kerjanya adalah sebagai berikut:
 a. Tahap persiapan sampel bakteri gram negatif, sekitar 1 x 10⁹ sel bakteri dimasukkan ke dalam tabung mikrosentrifuge ukuran 1,5 mL.
 b. Lakukan sentrifugasi selama 1 menit dengan kecepatan 14.000-16.000 x g. Supernatant hasil sentrifugasi dibuang.
 c. Tambahkan GT Buffer sebanyak 180 μL dan pelet dilarutkan kembali dengan menggunakan vortex atau pipet.
 d. Tambahkan Proteinase K sebanyak 20 μL (pastikan ddH2O telah ditambahkan sebelumnya).
 e. Inkubasi pada suhu 60°C minimal selama 10 menit. Selama inkubasi, tabung dibalik setiap 3 menit.
f. Pada tahapan lisis, tambahkan 200 μL GB Buffer ke dalam sampel dan dicampur hingga merata dengan cara divortex selama 10 detik.

g. Inkubasi pada suhu 70°C minimal selama 10 menit. Selama inkubasi, tabung dibalik setiap 3 menit.

h. Selanjutnya pada tahap pengikatan DNA, tambahkan 200 μL etanol absolut pada lisat sampel dan dengan segera dicampur dengan cara dikocok. Jika terjadi pengendapan, pisahkan sebisa mungkin dengan menggunakan pipet.

i. GD Column diletakkan pada Collection tube 2 mL. Campuran (termasuk endapan) dipindahkan ke dalam GD Column selanjutnya disentrifugasi dengan kecepatan 14.000-16.000 x g selama 2 menit.

j. Collection tube ukuran 2 mL yang berisi materi sisa dipisahkan selanjutnya GD Column diletakkan pada Collection tube ukuran 2 mL yang baru.

k. Pada tahap pencucian, tambahkan 400 μL of W1 Buffer pada GD Column. Disentrifugasi dengan kecepatan 14-16.000 x g selama 30 detik selanjutnya materi pada collection tube dipisahkan.

l. GD Column diletakkan kembali pada collection tube 2 mL. Ditambahkan 600 μL Wash Buffer (pastikan etanol telah ditambahkan) pada GD Column. Disentrifugasi pada kecepatan 14.000-16.000 x g selama 30 detik selanjutnya materi pada collection tube dipisahkan.

m. GD Column diletakkan kembali pada collection tube 2 mL. Disentrifugasi kembali selama 3 menit pada kecepatan 14.000-16.000 x g untuk mengertingkan kolom matrik dan selanjutnya dilakukan elusi DNA.

n. GD Column kering dipindahkan pada tabung mikrosentrifuge 1,5 mL bersih. Ditambahkan pre-heated Elution Buffer ke dalam tengah kolom matrik. Didiamkan sedikitnya 3 menit agar Elution Buffer terserap sempurna. Disentrifugasi dengan kecepatan 14.000-16.000 x g selama 30 detik untuk menghasilkan DNA yang murni.

o. Setelah proses isolasi selesai, kemudian dilanjutkan dengan analisis isolat DNA. Analisis DNA dapat dilakukan secara kualitatif maupun kuantitatif.
Saudara mahasiswa dari rangkaian prosedur di atas, secara umum, isolasi DNA bakteri melibatkan tiga tahapan yaitu 1) perusakan sel, 2) ekstraksi DNA, dan 3) purifikasi DNA. Prokaryot memiliki DNA inti yang terkonsentris di wilayah yang tidak diselubungi oleh membran ganda (nukleus) seperti pada sel eukaryot. Pada kebanyakan bakteri, molekul DNA berukuran besar terorganisasi dalam bentuk kromosom sirkular. Proses pengeluaran DNA dengan cara diekstraksi atau dilisiskan biasanya dilakukan dengan homogeni dengan penambahan bufer ekstrasi atau bufer lisis untuk mencegah rusaknya DNA.

Pada bakteri Gram negatif, lisis sel dilakukan hanya dengan penambahan proteinase K. Proteinase K merupakan enzim hidrolitik yang bekerja memutus ikatan-ikatan peptida pada protein. Setelah dilakukan ekstraksi, maka proses dilanjutkan dengan presipitasi DNA dengan menggunakan etanol absolut atau isopropanol. Etanol akan melarutkan bahan-bahan lain selain DNA sehingga ketika dilakukan sentrifugasi DNA akan terpisah dengan bahan-bahan lain tersebut. Setelah terpisah, DNA dilarutkan kembali dengan bufer TE.

Anda sudah mempelajari metoda isolasi DNA kromosom (genom) bakteri, Nah sekarang anda akan mempelajari Isolasi DNA plasmid bakteri yang dilakukan dengan metode reagen Kit, dengan prosedur sebagai berikut:

3.2) Isolasi DNA plasmid Bakteri (Preparasi Mini plasmid DNA Bakteri)

Bahan yang digunakan:
Koloni bakteri dan Media Luria Berthani (LB):
Larutan I: 50 mM glukosa; 25 mM Tris-HCl (pH 8,0); dan larutan 1 mM EDTA (pH 8,0).
Larutan II: 5M NaOH dan 10% Sodium Dodecyl Sulphat (SDS).
Larutan III: 5 mL kalium asetat dan asam asetat glasial.
Lain-lain: Fenol, Etanol absolut, etanol 70% dan buffer TE pH 7,6.

Prosedur kerja:
1. Ambil stok bakteri yang berisi plasmid dari satu koloni yang diinginkan, masukkan ke dalam tabung sentrifuga berisi medium LB cair (broth).
2. Tumbuhkan (inokulasi) pada shaker inkubator bersuatu 37°C, goyang dengan kuat selama 12-16 jam.
3. Sentrifugasi tabung yang berisi inokulum dengan kecepatan 10.000 rpm pada suhu 4°C selama 5 menit.
4. Buang supernatant, tambahkan pelet sel bakteri dengan 100 µL larutan pertama, vortex keras selama 5 menit sampai terlarut.
5. Tambahkan 200 µL larutan kedua (larutan ini harus dibuat segar menjelang akan digunakan). Bolak balik keras 2-4 kali, kemudian inkubasi pada suhu ruang selama 5 menit.
6. Tambahkan 150 µL larutan ketiga, vortex 2-3 menit, kemudian inkubasi dalam es selama 3-5 menit.
7. Sentrifugasi dengan kecepatan 10.000 rpm pada suhu 4°C selama 5 menit.
8. Pindahkan supernatant ke tabung baru, tambahkan 1x volume phenol-saturated buffer TE, kemudian vortex kuat selama 5 menit.
9. Sentrifugasi dengan kecepatan 10.000 rpm pada suhu ruang selama 5 menit.
10. Pindahkan supernatant bagian atas yang bening ke tabung baru, tambahkan 2x volume etanol absolut, kocok dengan tangan dan biarkan beberapa menit.
11. Sentrifugasi dengan kecepatan dengan kecepatan 10.000 rpm pada suhu 4°C selama 5 menit.
12. Tambahkan pelet yang diperoleh dengan 500µL etanol 70%, kemudian vortex selama 2 menit.
13. Sentrifugasi dengan kecepatan 10.000 rpm pada suhu 4°C selama 5 menit.

Setelah mempelajari teknik isolasi bakteri, berikut mari kita simak bagaimana teknik isolasi DNA dengan spesimen dari kultur jaringan (biakan virus). Berikut penjelasannya.

4) Isolasi DNA dari Kultur Jaringan (Biakan Virus)

Untuk dapat melakukan isolasi DNA dari kultur jaringan, silahkan dicermati langkah-langkah dalam prosedur berikut ini.
1. Lakukan sentrifugasi terhadap 5 mL sel-sel kultur jaringan (atau darah) dengan kecepatan 500 g selama 5 menit.
2. Pindahkan supernatant ke dalam tabung yang baru, kemudian lakukan sentrifugasi dengan kecepatan 10.000 g selama 10 menit untuk menghilangkan partikel-partikel yang besar.
3. Pindahkan supernatant ke dalam tabung sentrifuge, kemudian lakukan sentrifugasi dengan kecepatan 50.000 g selama 45 menit untuk mengendapkan partikel virus. Untuk menyeimbangkan tabung selama sentrifugasi, gunakan larutan PBS.
4. Buang supernatant, kemudian larutkan pelet virus di dalam 100-500 µL buffer K atau larutan TE yang mengandung 1% detergen NP-40 dan 100 µg/mL Proteinase K.
5. Pindahkan pelet virus yang telah dilarutkan dalam tabung mikrosentrifuge dan inkubasikan pada suhu 55°C selama 30-60 menit. Setelah itu, pindahkan ke
waterbath yang bersuhu 95°C selama 10 menit untuk menonaktifkan enzim protease.

7. Untuk melakukan amplifikasi (PCR) DNA virus, digunakan sampel sebanyak 5 sampai 10 µL di dalam 100 µL volume total PCR. (Yuwono, 2006).

Setelah mempelajari contoh isolasi beberapa spesimen klinik dan kultur mikroorganisme untuk memperoleh isolate DNA, selanjutnya akan disajikan materi tentang penyimpanan isolat DNA yang sangat diperlukan seorang ATLM agar dapat menggunakan isolat DNA tersebut baik untuk keperluan rutin ataupun untuk disimpan dalam waktu lama tanpa terganggu keutuhan DNA tersebut.

1.6 Penyimpanan Isolat Asam Nukleat (DNA)

Isolat DNA yang sudah diperoleh dari spesimen yang berhasil diisolasi adakalanya langsung dilanjutkan pada proses berikutnya untuk teknik PCR ada juga yang pemeriksaannya ditunda sehingga diperlukan tatacara penyimpanan isolate DNA tersebut. Silakan anda simak penjelasannya berikut ini.

Penyimpanan larutan DNA atau RNA sering menimbulkan masalah. Apabila ingin disimpan dalam waktu lama, larutan DNA dapat disimpan dalam bentuk aliquot dalam suhu -20°C atau -70°C untuk menghindari kerusakan karena pengulangan freeze-thawing. Untuk pemakaian sehari-hari DNA dapat disimpan pada suhu 4°C untuk beberapa bulan. Hanya saja, jika DNA dilarutkan dalam air, kualitas DNA tersebut dapat memburuk jika disimpan dalam suhu 4°C (DNA bersifat asam lemah dalam air). Untuk mengatasinya, DNA dapat dilarutkan dalam bufer TE (Tris-EDTA). Teknik penyimpanan seperti ada kelemahannya karena EDTA merupakan chelating agent yang dapat mengikat ion Mg (Mg²⁺) sehingga dapat menjadi masalah apabila digunakan untuk pemeriksaan PCR. Tris tidak mempunyai efek penghambatan terhadap aktivitas Taq polimerase, hanya saja keberhasilan dan reproduksibilitasnya sering tergantung pada pH reaksi campuran PCR.

Anda sudah mempelajari materi-materi yang terkait teknik isolasi DNA. Selanjutnya akan disajikan contoh aplikasi isolasi Asam nukleat yang langsung berhubungan dengan diagnostik.

1.7 Aplikasi Isolasi Asam Nukleat untuk Diagnostik

Sebagai seorang ATLM, salah satu kompetensinya adalah menerapkan aplikasi isolasi asam nukleat (DNA) yang merupakan aplikasi di bidang diagnostik untuk membantu menegakkan diagnosis pasien melalui pemeriksaan laboratorium.

Berikut disajikan beberapa contoh aplikasi isolasi DNA untuk diagnostik seperti untuk identifikasi gen penyebab penyakit infeksi baik melalui penelitian ataupun pemeriksaan laboratorium klinik pada pasien.
1) Isolasi DNA dalam isolat Escherichia coli Multi Drug Resistance (E. coli MDR)

Tujuan khusus penelitian tersebut adalah mengetahui keberadaan fragmen gen PMQR yang terletak di dalam plasmid pada isolat E. coli MDR dan mengetahui keberadaan fragmen gen QRDR yang terletak di dalam kromosom pada isolat E. coli MDR. Berikut kita simak penjelasannya.

1.1) Isolasi DNA Plasmid Isolat Escherichia coli MDR Ciprofloxacin

Sebelum dilakukan isolasi DNA plasmid isolat Escherichia coli perlu dilakukan persiapan isolasi plasmid dari isolat E. coli MDR ciprofloxacin sebagai berikut:

Isolat Escherichia coli MDR ciprofloxacin dikultivasi pada media Luria Berthani (LB) Broth dilakukan dengan cara: diambil sebanyak 50 µL suspensi bakteri dari kultur stok dengan mikropipet, masukkan ke dalam LB Broth 5 mL dalam tabung reaksi yang mengandung ciprofloxacin 10 µg/ mL, kemudian diinkubasi pada shaker orbital incubator 37°C selama 16-24 jam (overnight). Suspensi bakteri siap dilakukan isolasi plasmid.

Isolasi DNA plasmid isolat E. coli menggunakan Presto™ Mini Plasmid Kit (GENEAIID). Tahapan kerja kit tersebut menggunakan prinsip metode alkaline lysis solution (Sambrook et al., 1989). Proses isolasi plasmid dilakukan dengan tahapan sebagai berikut:

1. Pemanenan
 - Pipet 1,5 mL kultur sel bakteri di dalam media LB broth, masukkan ke dalam sebuah tabung mikrosentrifuga 1,5 mL.
 - Sentrifugasi dengan kecepatan 14.000-16.000 x g selama 1 menit pada suhu kamar untuk membentuk pelet sel.
 - Buang supernatan yang mengandung sisa media.
 - Ulangi prosedur 1-3, sampai kultur sel dalam media Luria Berthani (LB) habis. Lalu akan diperoleh pelet sel.

2. Resuspensi sel
 - Campurkan 200µL reagen PD1 buffer (pastikanRNAs A telah ditambahkan ke dalam reagen PD1 buffer tadi) dan 2µL Trueblue lysis buffer ke dalam tabung mikrosentrifuga yang baru, lalu dicampur perlakan-lahan sampai homogen.
 - Campurkan yang sudah homogen tersebut dipipet dan dimasukkan ke dalam tabung mikrosentrifuga yang sudah mengandung pelet sel, lalu vortex sampai larut.

3. Pemecahan/ pelisisan Sel
 - Tambahkan 200 µL reagen PD2 buffer untuk campuran yang telah diesuspensi tadi, lalu aduk dengan membolakbalikan tabung sebanyak 10 kali. Jangan divortex untuk menghindari geseran DNA genom.
• Inkubasi pada suhu kamar selama minimal 2 menit untuk memastikan lisat yang homogen. Tidak melebihi 5 menit. Harus Anda perhatikan bahwa setelah menambahkan PD2 bufer, setiap endapan akan benar-benar larut dan warna suspensi akan berwarna biru. Jika suspensi masih sedikit warna birunya atau kecokelat-coklatan, lakukan terus pencampuran sampai suspensi benar-benar biru. (Proses ini dapat disimak bersama pada Gambar 7.5) Tutup segera botol PD2 bufer setelah digunakan untuk menghindari pengasaman CO₂.

Gambar 7.5. Proses Homogenisasi Lisat sel E. coli MDR Ciprofloxacin

4. Netralisasi
• Tambahkan 300 µLreagenPD3 buffer lalu campur bolak-balik dengan cepat 4-6 kali (jangan divortex). Setelahmenambahkan PD3 bufer, suspensi menjadi tidak berwarna seperti yang ditunjukkan pada Gambar 7.6.
• Sentrifugasi 14.000- 16.000 xg selama 3 menit pada suhu kamar.

Gambar 7.6. Proses Netralisasi Suspensi E. coli MDR Ciprofloxacin
5. Pengikatan DNA
 - Pipet supernatant tadi, lalu masukkan ke dalam tabung PD column.
 - Sentrifugasi 14.000- 16.000 xg selama 30-60 detik pada suhu kamar. Selama sentrifugasi, tabung PD column harus diletakkan di dalam collection tube 2 mL (Tabung mikrosentrifuga 2 mL).
 - Lalu buang larutan di dalam collection tube 2 mL.
 - Letakkan kembali PD column ke dalam collection tube 2 mL.

6. Pencucian
 - Tambahkan 400 µL W1 buffer ke dalam tabung PD column. Sentrifugasi pada 14.000-16.000 x g. Lalu buang larutan di dalam tabung Collection tube 2 mL. Letakkan kembali tabung PD column di dalam tabung collection tube 2 mL.
 - Tambahkan 600µL wash buffer (pastikan etanol absolute telah ditambahkan di dalam botol wash buffer) ke dalam tabung PD column.
 - Sentrifugasi pada 14.000- 16.000 x g selama 30-60 detik. Lalu buang larutan di dalam collection tube 2 mL. Letakkan kembali tabung PD column di dalam collection tube.
 - Sentrifugasi lagi pada 14.000- 16.000 x g selama 3 menit untuk mengeringkan matriks PD column (tujuannya untuk menghilangkan residu wash buffer).
 - Pindahkan tabung PD column yang telah kering ke dalam tabung mikrosentrifuga 1,5 mL yang baru.

7. Proses Elusi
 - Tambahkan 50 µL reagen Elution buffer ketengah-tengah matriks PD column.
 - Diamkan 2 menit agar reagen elution buffer terserap sempurna.
 - Sentrifugasi 14.000- 16.000 x g selama 2 menit. Hasil isolasi DNA plasmid (eluen) di dalam tabung mikrosentrifuga 1,5 mL siap diperiksa dengan teknik PCR dan elektroforesis.

Skematik isolasi DNA plasmid dari bakteri dapat dilihat pada Gambar.7.7
1.2) Isolasi DNA Kromosomal Isolat *E. coli* MDR Ciprofloxacin

Isolasi DNA kromosomal dari bakteri *E. coli* MDR ciprofloxacin menggunakan Wizard
8genomik DNA purification Kit (Promega).

1. Tahap Persiapan Pelet
 - Tambahkan 1 mL kultur bakteri semalam (overnight) ke dalam tabung mikrosentrifuga 1,5 mL.
 - Sentrifugasi pada kecepatan 13.000-16.000 xg selama 2 menituntuk membuat pelet sel. Buang supernatant.
 - Untuk bakteri Gram positif lanjutkan ke langkah 3.
 - Untuk bakteri Gram negatif langsung ke langkah 6.
 - Suspensikan kembali pelet sel secara menyeluruh di dalam 480 µL Ethylen diamine tetrachloride (EDTA) 50 mM.
 - Tambahkan enzim litik yang sesuai ke dalam pelet sel yang diresuspensikan tadi ke dalam volume total 120 µL, dan pipet dengan perlahan untuk mencampur. Tujuan dari pre treatmen adalah untuk melemahkan dinding sel sehingga pelisisan sel dapat terjadi secara efisien. Catatan: untuk spesies *Staphylococcus* tertentu, campuran 60 µL dari 10 mg/mL lysostaphin diperlukan untuk pelisisan yang efisien. Namun, banyak strain bakteri Gram positif (misalnya: *Bacillus subtilis*, *Micrococcus luteus*, *Nocardia otitidiscaviarum*, *Rhodococcus rhodochrous*, dan *Brevibacterium albidium*), pelisisannya hanya menggunakan lisozim saja.
 - Sampel diinkubasi pada suhu 37°C selama 30-60 menit. Sentrifugasi selama 2 menit pada 13.000-16.000 x g dan supernatant dibuang.
2. Tahap Pelisisan Sel
 - Reagen nuclei lysis solution ditambahkan sebanyak 600 µL. Resuspensi dengan mikropipet perlahan—lahan sampai sel tersuspensi kembali.
 - Inkubasi pada suhu 80°C di dalam waterbath selama 5 menit untuk melisiskan sel, kemudian didinginkan pada suhu kamar.
 - Tambahkan 3 µL reagen RNase solution ke dalam lisat sel. Tabung tersebut dicampur bolak-balik perlahan—lahan sebanyak 2-5 kali pencampuran.
 - Inkubasi pada suhu 37°C di dalam waterbath selama 15-60 menit. Dinginkan sampel pada suhu kamar.

3. Tahap Pengendapan Protein
 - Reagen protein presipation solution ditambahkan sebanyak 200 µL ke dalam lisat sel yang telah ditambah RNase. Vortex dengan kecepatan tinggi selama 20 detik.
 - Inkubasi sampel pada es (di dalam freezer refrigerator).
 - Sentrifugasi pada 13.000-16.000 x g selama 3 menit.

4. Rehidrasi dan Presipitasi DNA
 - Pindahkan supernatant yang menganung 600 µL isopropanol pada suhu ruangan. Catatan: beberapa supernatant mungkin tetap di dalam tabung pertama yang berisi pellet protein. Tinggalkan sisa cairan ini di dalam tabung untuk menghindari kontaminasi larutan DNA dengan protein yang mengendap.
 - Campur perlahan—lahan dengan membolak-balik tabung sampai untai DNA yang seperti benang membentuk massa yang dapat dilihat.
 - Sentrifugasi pada 13.000-16.000 xg selama 2 menit.
 - Supernatant dituangkan dengan hati-hati dan kuras/ tiriskan tabung di atas kertas tisu bersih. Etanol 70% suhu kamar ditambahkan sebanyak 600µL dan tabung dibolak-balikkan perlahan—lahan beberapa kali untuk mencuci pelet DNA.
 - Sentrifugasi pada 13.000-16.000 xg selama 2 menit. Etanol diisap dengan hati-hati.
 - Tabung dikuras/ ditiriskan di atas kertas tisu bersih, sehingga memungkinkan pelet mendapat udara kering selama 10-15 menit.
 - Tambahkan 100 µL dan reagen DNA rehydration solution ke dalam tabung dan rehidrasi DNA dengan menginkubasi pada 65°C di dalam waterbath selama 1 jam. Campur larutan secara periodik dengan perlahan—lahan dengan menekan tabung. Atau cara lain, rehidrasi DNA dengan menginkubasi larutan campuran selama semalam pada suhu kamar atau pada suhu 4°C.
 - Simpan DNA pada 2-8°C. Skematik isolasi DNA genom dari bakteri dapat dilihat pada Gambar 7.8 berikut ini.
Di bidang kedokteran, penyakit tuberkulosis masih menjadi masalah kesehatan utama sampai saat ini, karena menunjukkan angka yang cukup tinggi sebagai penyebab kematian di Indonesia. Diagnosis klinik pada infeksi M.tuberculosis masih mengandung banyak kelemahan antara lain kurang sensitif dan memerlukan waktu dan proses yang panjang.

2.1) Penyediaan isolat *Mycobacterium tuberculosis*

Penyediaan isolat Mycobacterium tuberculosis diperoleh dari hasil isolasi spesimen klinis yang diperoleh di bagian mikrobiologi, Fakultas Kedokteran Universitas Indonesia, Jakarta. Pembanding yang digunakan yaitu strain standar H37Rv dan dua strain atypical Mycobacteria dari Rumah Sakit sumber Waras Jakarta. Strain yang digunakan tersebut dibiakkan dalam medium agar miring Lowenstein-Jensen (BBL) dan diinkubasi pada suhu 37°C selama 10-20 hari.

2.2) Isolasi DNA *Mycobacterium tuberculosis*

Isolasi DNA Mycobacteria menggunakan metode Sambrooke, dkk., 1989. Sebagai berikut:

1. Strain bakteri yang telah tumbuh dipanen, kemudian dilarutkan dalam air suling steril. Sel bakteri dimatikan dengan pemanasan pada suhu 80°C, disentrifugasi, dicuci dengan larutan NaCl 0,9% dan dilarutkan dalam bufer 0,01M TE (Tris-EDTA) pH 8.
2. Sel bakteri dilisiskan untuk mengekstraksi DNA dengan menggunakan 1/10 volume lisozim (10 mg/mL), diinkubasi selama 90 menit pada suhu 37°C.
3. DNA diisolasi dengan larutan jenuh Tris-fenol/kloroform-isomilalkohol (1:1). Larutan digoyang (shaker) selama 10 menit dan disentrifuge kembali, fase air yang mengandung DNA dipisahkan, kemudian ditambahkan ke dalamnya larutan kloroform dengan volume yang sama dan dikocok selama 5 menit. Fase air yang terbentuk dipisahkan dengan cara sentrifugasi pada 10.000 rpm selama 15 menit. DNA diendapkan dengan penambahan 1/25 volume 5 M NaCl dan 2,5 volume etanol absolut pada suhu -20°C.
4. Pelet DNA dicuci 2 kali dengan etanol 70%, disentrifugasi seperti cara di atas selama 5 menit. Supernatant dibuang, endapan DNA dilarutkan dalam 10 mM larutan TE pH 8.
5. Konsentrasi DNA diukur menggunakan spektrofotometer dengan panjang gelombang 260 nm.
6. Konsentrasi DNA hasil isolasi kemudian dibuat pengenceran dengan larutan bufer TE sampai 10⁻⁹ gDNA/mL untuk pengujian amplifikasi DNA. (F. Suhadi, 1996).
Latihan

1) Jelaskan tujuan dari teknik isolasi DNA dan RNA!
2) Jelaskan tentang prinsip isolasi DNA dan RNA!
3) Sebutkan jenis spesimen yang digunakan untuk isolasi DNA!
4) Jelaskan tentang reagen isolasi DNA untuk spesimen darah beserta fungsinya!
5) Jelaskan tahapan isolasi DNA dari spesimen:
 a. darah
 b. kultur bakteri
 c. kultur jaringan (biakan virus)
 d. jaringan yang disimpan dalam parafilm

Petunjuk Jawaban Latihan

Untuk membantu Anda dalam mengerjakan soal latihan tersebut silakan pelajari kembali materi tentang:

1) Tujuan Isolasi Asam Nukleat (DNA atau RNA)
2) Prinsip Isolasi DNA atau RNA
3) Jenis Spesimen untuk Isolasi DNA
4) Reagen dan Langkah Kerja Isolasi DNA

Ringkasan

1. Tujuan utama isolasi asam nukleat adalah untuk memisahkan DNA atau RNA dari bahan lain seperti protein, lemak, dan karbohidrat. Dengan memperoleh DNA atau RNA yang murni, maka akan diperoleh bahan DNA dan atau RNA untuk digunakan dan dimanfaatkan sebagai sampel untuk pemeriksaan analisis molekuler tahap selanjutnya sesuai tujuan tertentu, misalnya untuk dilanjutkan proses amplifikasi untuk mengidentifikasi atau mendeteksi ada tidaknya gen pada suatu penyakit infeksi tertentu atau gen resisten terhadap suatu antibiotik tertentu (MDR) dan lain-lain.

2. Terdapat 3 prinsip utama dalam isolasi DNA yakni penghancuran (lisis), ekstraksi atau pemisahan DNA dari bahan padat seperti selulosa dan protein, serta pemurnian DNA. Secara umum, tahap isolasi DNA dimulai dari pengambilan sampel, pelisisan membran dan/ atau dinding sel, ekstraksi DNA, presipitasi DNA, pemurnian DNA, dan pengawetan DNA.

3. Spesimen untuk isolasi DNA dapat berasal dari darah, jaringan dalam, semen, saliva, akar rambut, urin, gigi, kultur sel hewan, bakteri, jaringan tumbuhan dan fungi. Kualitas hasil isolasi DNA tergantung pada kualitas spesimen yang digunakan. Hasil isolasi DNA yang baik diperoleh dengan memurnikan DNA genomik dari sel atau jaringan yang segar. Jika spesimen tidak dapat segera diproses, perlu dilakukan penyimpanan dengan kondisi khusus untuk menjaga integritas DNA.
4. Peralatan yang digunakan untuk isolasi DNA adalah mesin sentrifugasi, tabung sentrifugasi, vortex, mikropipet, tip, pipet transfer, inkubator atau waterbath, sarung tangan dan masker. Adapun reagen yang diperlukan berbeda-beda tergantung pada jenis spesimen yang akan diperiksa maupun kit yang digunakan. Namun secara umum, reagen yang digunakan terdiri dari: buffer lisis yang berfungsi untuk merusak integritas barrier dinding sel; ethanol dingin untuk presipitasi DNA; fenol, fenol:kloroform, isopropanol, Fenol: kloroform:isoamilalkohol untuk pemurnian DNA dari ekstrak sel; Proteinase-Kuntuk pemurnian DNA dari kontaminan protein; RNase untuk pemurnian DNA darikontaminan RNA; Cesium Chlorida (CsCl) atau garam dengan konsentrasi tinggi, seperti 0,25 M sodium acetate atau 0,1 M sodium chloride digunakan untuk pemisahan DNA dari molekul RNA dan protein; ethanol 70% untuk pencucian DNA; dan buffer TE atau ddH$_2$O steril untuk melarutkan DNA. Preparasi sampel yang dilakukan pun berbeda-beda tergantung pada jenis spesimen yang akan diperiksa.

Tes 1

1) Memperoleh DNA atau RNA yang murni, terpisah dari bahan lain seperti protein, lemak, dan karbohidrat merupakan tujuan dari....
 A. sentrifugasi
 B. isolasi
 C. kromatografi
 D. PCR

2) Berikut ini merupakan prinsip dasar dari isolasi DNA, kecuali....
 A. ekstraksi
 B. lisis (penghancuran)
 C. pemurnian
 D. renaturasi

3) Senyawa kimia yang biasa digunakan sebagai buffer lisis dalam proses perusakan dinding sel bakteri adalah....
 A. buffer TE
 B. lisozim
 C. fenol
 D. ethanol dingin

4) Pemurnian DNA dari ekstrak sel dapat menggunakan salah satu reagen di bawah ini, kecuali....
 A. fenol : kloroform
 B. fenol : kloroform : ethanol
 C. fenol:kloroform:isoamylalkohol
 D. isopropanol
5) Penambahan etanol dingin berfungsi untuk....
 A. Melisiskan eritrosit
 B. Melisiskan leukosit
 C. Presipitasi DNA
 D. Menghilangkan parafin dari jaringan

6) Pada bakteri Gram negatif, lisis sel dilakukan hanya dengan penambahan suatu enzim hidrolitik yang berfungsi memutus ikatan-ikatan peptida pada protein. Enzim yang digunakan tersebut adalah....
 A. Ligase
 B. Restriksi
 C. Proteinase K
 D. Katalase

7) Fungsi penambahan RNase pada isolasi DNA ialah....
 A. pemurnian DNA dari kontaminan RNA
 B. pemurnian RNA dari kontaminan DNA
 C. mendenaturasi untai ganda DNA
 D. memutus ikatan peptida pada protein

8) Agar dapat disimpan dalam waktu yang lama, hasil isolasi DNA atau RNA harus disimpan dalam kondisi....
 A. disimpan dalam bentuk aliquot pada suhu -20°C atau -70°C
 B. disimpan dalam bentuk aliquot pada suhu 20°C
 C. dilarutkan dalam air kemudian disimpan pada suhu 4°C
 D. dilarutkan dalam NaCl fisiologis kemudian disimpan pada suhu 4°C

9) Pada proses netralisasi suspensi E. Coli MDR Ciprofloxacin, pencampuran sempurna ditandai dengan suspensi....
 A. tidak berwarna
 B. bewarna biru dan homogen
 C. bewarna biru dan endapan berwarna coklat
 D. tidak berwarna dan endapan berwarna coklat

10) Fungsi Tris-EDTA dalam prosedur isolasi DNA ialah....
 A. untuk presipitasi DNA
 B. untuk presipitasi protein
 C. sebagai medium agregasi plasmid DNA agar DNA terlihat
 D. sebagai larutan isotonis agar DNA tidak rusak

\[
\text{Tingkat Penguasaan} = \frac{\text{Jumlah jawaban benar}}{\text{Jumlah Soal}} \times 100\%
\]

Arti tingkat penguasaan:
- 90 - 100% = baik sekali
- 80 - 89% = baik
- 70 - 79% = cukup
- < 70% = kurang
Topik 2
Teknik Isolasi RNA

Setelah Anda mempelajari materi topik 1 tentang Teknik Isolasi DNA, selanjutnya Anda akan mempelajari tentang Teknik Isolasi RNA. Materi Teknik Isolasi RNA meliputi Tujuan dan Prinsip Isolasi RNA, Hal-hal yang Harus Diperhatikan pada Teknik Isolasi RNA, Jenis- Jenis Metode isolasi RNA, Penyimpanan Isolat Asam Nuleat (RNA), Aplikasi Isolasi Asam Nukleat untuk Diagnosis.

Apakah Anda sudah berpengalaman menerapkan Teknik Isolasi RNA? Apabila Anda sudah berpengalaman, metode isolasi apa saja yang digunakan di laboratorium klinik tempat Anda bekerja? Selanjutnya silakan Anda simak sub topik tentang Teknik Isolasi RNA berikut ini.

Beberapa molekul RNA pada sel eukariotik berperan penting dalam proses sintesis protein, antara lain, yaitu mRNA, tRNA, rRNA, dan snRNA. mRNA (messenger RNA) berfungsi sebagai pembawa informasi yang menentukan urutan asam amino protein dari DNA ke ribosom. tRNA (transfer RNA) memiliki fungsi untuk mentranslasi kodon-kodon mRNA menjadi asam amino. rRNA (ribosom RNA) mempunyai peran struktural dan katalitik (ribozim) dalam ribosom. snRNA (small nuclear RNA) mempunyai peran struktural dan katalitik dalam spiosom, yaitu kompleks dari protein dan RNA yang menyambung pramRNA dalam nukleus eukariotik.

Menurut Sambrook & Russel (2001: 7,2), sel mamalia mengandung RNA sebesar 10⁻⁵ µg, 80-85% dari total RNA adalah rRNA (terutama 28S, 18S, 5,8S, dan 5S) dan sisanya 15-20% terdiri dari berbagai RNA dengan berat molekul yang rendah seperti tRNA dan snRNA. Molekul mRNA hanya ditemukan sebesar 1-5% dari total RNA pada sel mamalia dan memiliki ukuran dan urutan basa nukleotida yang bervariasi. Ukuran panjang mRNA dapat berbeda-beda, mulai dari beberapa ratus basa sampai beberapa ribu basa nukleotida. Molekul mRNA pada sel mamalia memiliki poli-A yang cukup panjang pada ujung 3’nya sehingga dapat mempermudah mRNA untuk diisolasi. Molekul komplemen poli-T atau primer oligo (dT) dapat digunakan sebagai ‘pengait’ untuk mengikat poli-A yang terdapat pada ujung mRNA. Dengan begitu, mRNA dapat dipisahkan dengan rRNA dan tRNA yang banyak jumlahnya.

Seperti halnya DNA, RNA dapat diisolasi dengan menggunakan beberapa metode sesuai dengan tujuan isolasinya. Pada sub topik berikut mari kita bersama-sama menyimak pembelajaran tentang hal-hal yang berkaitan dengan isolasi RNA.
1. **Tujuan dan Prinsip Isolasi RNA**

Isolasi adalah prosedur yang digunakan untuk memisahkan suatu bagian dari bagian lain dengan tujuan tertentu. Tujuan isolasi RNA digunakan untuk memisahkan RNA dari zat lain sehingga dihasilkan RNA murni. Prinsip isolasi RNA sebenarnya tidak jauh berbeda dengan isolasi DNA yang sudah dijelaskan sebelumnya.

Prinsip isolasi RNA meliputi tiga hal, yaitu: Ekstraksi RNA, Pemurnian RNA, dan Presipitasi RNA. Isolasi RNA dapat dilakukan dengan mudah menggunakan Kit Isolasi RNA. Penggunaan Kit Isolasi RNA memberikan hasil isolat RNA yang lebih murni dari kontaminan dan dari degradasi RNA.

Metode untuk ekstraksi RNA mirip dengan metode ekstraksi DNA. Namun, molekul RNA relatif lebih pendek dan lebih sulit rusak dengan shearing sehingga disrupsi sel dapat dilakukan dengan lebih agresif. Meskipun demikian, RNA sangat mudah dihancurkan oleh RNase yang terdapat endogen dengan konsentrasi yang bervariasi di dalam sel dan di eksogen di jari tangan. Sehingga, untuk ekstraksi RNA harus menggunakan sarung tangan dan medium yang digunakan untuk isolasi harus mengandung detergen kuat untuk segera mendenaturasi RNase yang ada. Proses deproteinase harus dilakukan secara lebih agresif karena RNA sering berikatan dengan protein. Penambahan DNase dapat digunakan untuk menghilangkan DNA. RNA kemudian dipresipitasi dengan etanol. Reagen yang sering digunakan adalah guanidin isitosianat yang merupakan inhibitor kuat RNase dan dapat mendenaturasi protein.

Setelah dilakukan isolasi RNA, maka tahapan selanjutnya yakni identifikasi molekular suatu gen yang dapat dilakukan dengan langkah berikut sebagaimana disajikan pada Gambar 7.9.

```
Gambar 7.9. Bagan Tahapan Identifikasi Molekular Suatu Gen
```

Berikut Anda perhatikan enjelasan bagan 7.3 di atas. Setelah isolasi RNA dilakukan, proses selanjutnya adalah pengukuran konsentrasi RNA yang telah diisolasi menggunakan spektrofotometri pada panjang gelombang λ260. Kemudian dilakukan sintesis copy DNA...
Biologi Sel dan Molekuler

(cDNA) menggunakan Reverse Transcriptase PCR (RT-PCR). RT-PCR berbeda dengan PCR biasa karena ada penambahan enzim Reverse Transcriptase pada proses PCRnya. Penambahan enzim Reverse Transcriptase bertujuan agar RNA yang telah diisolasi dapat digandakan dalam bentuk cDNA. Proses PCR ini tidak jauh berbeda dengan PCR pada umumnya, yaitu meliputi denaturasi, annealing, dan elongasi.

Secara umum, terdapat tiga dasar persyaratan isolasi RNA, yaitu: melisiskan membran sel untuk mengekspos RNA; pemisahan RNA dari zat-zat dan molekul lainnya seperti DNA, lipid, protein, dan karbohidrat; dan pemulihan RNA dalam bentuk murni.

2. Hal-hal yang harus diperhatikan pada Teknik Isolasi RNA

RNA sangat sensitif terhadap nuklease. Semua basa RNA memiliki grup 2-hidroksil reaktif sehingga mudah terjadi reaksi kimia yang menghasilkan air dan merusakkan rantai gulanya. Yang penting diingat, nuclease (RNase) relative stabil di lingkungan dan bahkan kadang masih dapat bertahan setelah proses denaturasi panas dan ekstraksi fenol.

Aktivitas nuklease selama proses ekstraksi asam nukleat dapat dikurangi dengan cara:

1. Mempertahankan suhu inkubasi dan sentrifugasi di bawah suhu optimum nuklease (37°C), misalnya dengan mempertahankan larutan ekstrak pada suhu es atau 4 °C.
2. Menginaktivasi nuklease pada permukaan gelas, air dan bahan habis pakai dengan bahan kimia seperti DEPC (diethylpyrocarbonate).
3. Inaktivasi dan atau penghambatan secara kimia, misalnya dengan fenol atau garam guanidium.
4. Penghilangan ion logam ko-faktor untuk nuklease dengan chelating agent.

Berikut ini beberapa hal yang harus diperhatikan dalam prosedur isolasi RNA:

1. Prosedur isolasi RNA harus dilakukan dalam kondisi RNase-free.
2. Sampel yang akan diisolasi RNanya harus bebas dari kontaminasi dengan ribonucleases (RNase).
3. Peralatan yang dipergunakan harus terlebih dahulu diautoklaf atau ditreatment (disemprot ethanol 70%) untuk mencegah kontaminasi RNase.
4. Selama melakukan isolasi RNA, peneliti harus menggunakan sarung tangan (gloves) baru untuk melindungi pengguna dan melindungi RNA hasil isolasi dari nuclease yang terdapat pada kulit.
5. RNA diisoli dengan cara menghomogenasi jaringan pada buffer ekstraksi yang mengandung Guanidinium Thiocyanate (GTC) untuk melisikan sel dan menonaktifkan RNase endogenous.
6. Lithium Chloride (LiCl) yang ditambahkan pada homogenasi yang kedua berfungsi sebagai selective precipitation pada isopycnic centrifugation yang menggunakan Caesium Trifluoroacetate (CsTFA).
7. Isopycnic centrifugation adalah suatu mekanisme pemisahan molekul berdasarkan perbedaan Berat Jenis (BJ) antara DNA (1.5 –1.7 g/mL) dengan RNA (1.7 –2 g/mL).
8. Sesudah sentrifugasi, RNA berada pada pellet, protein berada di atas supernatan, DNA terlarut dalam supernatan. Pelet RNA selanjutnya dicuci untuk menghilangkan kontaminan protein dan DNA.

Untuk mengisolasi mRNA eukariotik (yang hanya 2-5% dari RNA seluler), dari campuran molecular RNA total dapat dilakukan dengan afinitas kromatografi terhadap kolumn oligo (dT)-selulosa. Pada konsentrasi garam yang tinggi, mRNA yang mengandung ekor poli (A) akan berikatan dengan oligo (dT) komplementer pada kolumn afinitas, sehingga mRNA tertinggal, sedangkan molekul lainnya dapat dicuci bersih dari kolumn menggunakan larutan tinggi garam. Selanjutnya, mRNA yang terikat tadi dapat dilarutkan dengan garam berkonsentrasi rendah.

3. Jenis-jenis Metode Isolasi RNA
Ada beberapa metode Isolasi RNA, di antaranya:

a. Metode Guanidin Tiosianat
Salah satu metode isolasi RNA adalah metode guanidin tiosianat. Guanidin tiosianat adalah salah satu senyawa yang paling efektif dalam mendenaturasi protein dan mampu menginaktivasi RNase selama proses ekstraksi. Prinsip kerja dari metode guanidine tiosianat adalah melisiskan membran sel dan membuat RNA larut di dalam larutan yang mengandung guanidin tiosianat. Penambahan larutan fenol/ kloroform pada larutan guanidin tiosianat dapat membuat pH larutan menjadi asam (pH 4). Di bawah kondisi asam, protein dan fragmen DNA (50 bp - 10.000 bp) akan berada pada fase interfase, sedangkan RNA berada pada fase cair (Gambar 7.10). RNA yang terdapat pada fase cair kemudian dipisahkan untuk dilakukan pencucian dan pemulihan RNA.

Gambar 7.10 Pemisahan RNA dari Molekul Protein dan DNA Di bawah Kondisi Asam
Sumber: Dale & Schantz 2002: 33, From Genes to Genom: Concept and Application of DNA Technology

b. Metode modifikasi Guanidin Tiosianat
Prosedur di bawah ini merupakan modifikasi dari purifikasi RNA metode guanidium thiocyanate. Isolasi RNA menggunakan prosedur ini membutuhkan waktu selama 4 jam...
dan memberikan hasil dengan tingkat kemurnian yang tinggi. Prosedur ini direkomendasikan untuk sintesis cDNA full-length dan reaksi RT-PCR. Metode ini juga bisa dilakukan untuk mengetahui RNA total dari jaringan atau kultur sel yang jumlahnya sedikit.

1) Sampel dari Jaringan:
 a. Bekukan jaringan di dalam nitrogen cair atau dry ice segera setelah pemotongan. Jaringan tahan disimpan selama beberapa bulan pada suhu -80°C.
 b. Potong jaringan yang telah beku menjadi potongan-potongan kecil (kurang dari 0,5 cm kubus) dan pindahkan ke dalam tabung, sesuai dengan jumlah jaringannya (jangan gunakan tabung polikarbonat dengan guanidine thiocyanate). Tambahkan 1 mL larutan GTC (guanidium thiocyanate 4 M, sodium sitrat 25 mM, pH 7.0, sarkosyl 0,5%, 2-mercaptoethanol 0,1 M, simpan di tempat yang terhindar dari cahaya) per 100 mg jaringan.

2) Sampel dari Kultur Sel
 a. Cuci sel dengan menggunakan larutan phosphate buffer saline (PBS) dingin dan pindahkan ke tabung mikrosentrifuge steril.
 b. Sentrifuge 1.000 rpm selama 10 menit dan tambahkan secukupnya larutan GTC (1 mL per 10^7 sel).
 c. Setelah kedua proses di atas selesai, kemudian dilanjutkan dengan isolasi RNA sebagai berikut:
 d. Tambahkan larutan berikut untuk homogenisasi dan campur dengan cara membolak-balikkan tabung setelah ditambahkan masing-masing reagen (semua jumlah dan volume pada prosedur ini ditujukan untuk 100 mg jaringan atau 10^7 sel): 0,1 mL sodium asetat 2M (pH 4,0), 1 mL fenol asam (pH 5,0) dan 0,2 mL kloroform.
 e. Kocok suspensi selama 30 detik.
 f. Inkubasi di es selama 15 menit.
 g. Sentrifuge sampel 10.000 rpm selama 20 menit pada suhu 4°C.
 h. Pindahkan fase cair bagian atas (mengandung RNA) ke tabung baru. Pastikan jangan mengganggu interfase yang mengandung protein dan DNA.
 i. Tambahkan 1 mL isopropanol100% ke fase cair, campur dan endapkan RNA dengan cara diinkubasi pada suhu -20°C selama 1 jam.
 j. Sentrifuge 14.000 rpm selama 20 menit pada suhu 4°C.
 k. Resuspensi pellet RNA dalam 0,5 mL larutan GTC dan pindahkan ke tabung mikrosentrifuge 1,5 mL yang baru.
l. Endapkan RNA dengan menambahkan 0,5 mL isopropanol 100% dan inkubasi pada -20°C selama 1 jam.
m. Sentrifuge selama 10 menit pada suhu 4°C (14.000 rpm), cuci pelet RNA dua kali dengan ethanol 70% dan keringkan presipitat.
n. Resuspendsi RNA di dalam 50 µl RNase-free water atau buffer TE. Jika mRNA akan diisolasi, resuspendsi di dalam 5 mL STE/NaCl0,5 M / Proteinase K (200 µg/mL) dan proses dengan prosedur seleksi poly (A)+. RNA dapat disimpan pada suhu -80°C selama beberapa bulan. Untuk penyimpanan yang lama, RNA sebaiknya disimpan di formamida.

Catatan: Guanidinium thiocyanate bersifat reversible dalam menginaktivasi RNase, oleh karena itu perlu kehati-hatian saat memisahkan fase cair yang mengandung RNA dengan interfase dan fase organik dibawahnya. Jika residu RNase mengkontaminasi sampel setelah deproteinasi, maka enzim tersebut dapat aktif kembali dan menghilangkan hasil denaturasi.

c. Metode Kromatografi Selulosa Oligo-deoxythymine (DT)

Dengan metode ini RNA Poli (A)+ dapat diisolasi dari RNA total menggunakan seleksi selulosa oligo (dT) atau langsung dari sampel jaringan dan kultur sel. Purifikasi mRNA dari RNA total direkomendasikan untuk jaringan dan sel yang bersumber dari bagian yang kaya RNase, sebagai upaya untuk meminimalisir kemungkinan degradasi RNA selama proses ekstraksi. Tahap isolasi RNA poli (A)+ ialah sebagai berikut:

1. Siapkan selulosa oligo (dT) (Boehringer or equivalent).
2. Cuci 1 g selulosa oligo (dT) dalam 50 mL NaOH0,2 M, di air steril selama 30 menit pada suhu ruangan pada rotating wheel. Netralisasi dengan pencucian 2x di dalam 50 ml Tris-HCl 500mM(pH 7,4), diikuti 6 kali dibilas di air steril. Lalu cuci dengan 50 mL RNA preparation binding buffer untuk menyamakan konsentrasi garam, pulihkan dengan sentrifugasi dan kemudian resuspendsi dalam 50 mL RNA preparation binding buffer.
3. Resuspendsi RNA total dalam 5 mL STE/ NaCl 0,5 M/ Proteinase K 200 µg/mL dan tambahkan 0,25 mL selulosa oligo (dT). Biarkan RNA untuk berikatan, inkubasi selama 1 jam pada rotating wheel pada suhu ruangan.
4. Selulosa oligo (dT) dalam lisat disentrifuge pada 2.000 rpm selama 1 menit. Buang supernatant dan resuspendsi lagi dalam 15 mL buffer pengikat. Ulangi tahap ini dua kali untuk menghilangkan RNA yang tidak berikatan (utamanya ribosomal RNA).
5. Pindahkan selulosa oligo (dT) ke alkali-treated econo-column (BioRad®). Kolom dengan perlakuan alkali ini akan diperoleh dengan mencuci kolom dengan NaOH 0,2 M, kemudian diikuti dengan bufer pengikat secukupnya.
6. Cuci selulosa oligo (dT) dengan 10 mL RNA preparation binding buffer diikuti dengan 2 mL RNA preparation washing buffer.
7. Larutkan RNA dengan 1 mL RNA preparation elution buffer. Etanol akan mengendapkan RNA dengan ditambahkan 100 µL NaCl 5M dan 2,5 mL etanol100%. Bekukan pada suhu -20°C.

Gambar 7.11 Prosedur Isolasi RNA

Sumber: Applied Molecular Genetics – Lecture 8: Biochemistry of cDNA Synthesis
cbc.arizona.edu/classes/bio471/pages/Lecture8.html

RNA hasil isolasi selanjutnya dinilai tingkat kemurniannya dan dikuantifikasi menggunakan spektrofotometer UV. Tingkat kemurnian RNA berbanding lurus dengan nilai absorbansi dan berkolerasi positif, apabila nilai rasio absorbansi sama dengan 2, maka sampel tidak terkontaminasi.

Integritas RNA dapat dicek dengan elektroforesis menggunakan gel agarose. Spesies RNA yang terbanyak (molekul rRNA) berukuran 23S dan 16S untuk prokaryot dan 18S dan 28S eukaryot. RNA tersebut akan tampak sebagai pita yang diskrit dalam gel agarose dan
mengindikasikan RNA lainnya masih utuh. Proses ini biasanya dilakukan dalam keadaan denaturasi untuk mencegah terjadinya formasi struktur sekunder pada RNA. Kualitas RNA yang bagus setelah dielektroforesis ialah tidak nampak smear dan rasio 25S/18S berada diantara 1,8-2,3.

d. Metode Trizol (Modifikasi Guanidin tiosianat)
Metode Trizol merupakan salah satu modifikasi lainnya dari Guanidin tiosianat. Adapun prosedur Isolasi RNA Metode TRIZOL adalah sebagai berikut.

Alat:
Microtube 1,5 mL; Mikropipet 50 uL, 200 uL, 500 uL, 1000 uL dengan tips yang sesuai; Mikrosentrifuse.

Bahan:
Sampel (suspensi sel kultur yang telah ditanami virus), Etanol absolute, - Kloroform, Isopropanol, Nuclease Free Water

Prosedur:
1. Campurkan ke dalam microtube 1,5 mL, 1 mL Trizol dan 250 uL suspensi sampel, kocok dan inkubasi 5 menit pada suhu kamar.
2. Tambahkan 200 uL kloroform, kocok, dan inkubasi pada suhu kamar 10-15 menit.
3. Sentrifuse 13,000 rpm selama 15 menit pada 2-8°C.
4. Pindahkan cairan bening berisi RNA ke dalam tabung 1,5 uL yang baru
5. Tambahkan 500 ul isopropanol, kocok dan inkubasi pada suhu kamar selama 10 menit.
6. Sentrifuse 13.000 rpm selama 10 menit pada 4°C. Presipitasi RNA akan membentuk pelet seperti gel pada dasar tabung
7. Buang supernatn secara hati-hati dengan menggunakan mikropipet
8. Cuci pelet dengan menambahkan 1 mL etanol 75% dingin.
9. Sentrifuse 13,000 rpm selama 15 menit pada 2-8°C.
10. Buang supernatn secara hati-hati dengan menggunakan mikropipet
11. Keringkan pelet di udara hingga tidak ada residu etanol
12. Larutkan RNA dalam 10-100 uL Rnase-free water (DEPC WATER),

e. Metode Langsung Isolasi RNA menggunakan Reagen kit
Saat ini metode langsung untuk teknik isolasi pada analisis biologi molekuler menggunakan reagen kit sudah banyak diproduksi. Di antaranya yaitu protokol ekstraksi RNA virus yang diproduksi oleh Qiagen.
1. Alat dan Bahan

Alat:
Biological Safety Cabinet (BSC) Class II; PCR workstation, Mikropipet 10 uL, 20 uL, 100uL, 200 uL, dengan tips yang sesuai ; Mikrosentrifus; Vortex mixer; APD (jas lab, sarung tangan, masker).

Bahan:
Kit RNA ekstraksi Qiagen (berisi : Buffer AVL, Carrier RNA dalam buffer AVE (1 ug/uL); Buffer AW1 (mengandung etanol 25 mL/50 tes); Buffer AW2 (mengandung etanol 30 mL/50 tes); Buffer AVE; Etanol; Sampel virus polio/isolat positif.

Prosedur Kerja:
Sebagai seorang ATLM pastikan prosedur kerja dilakukan secara berurutan langkah demi langkah sebagai berikut:

1. Lakukan ekstraksi RNA di BSC Class II dengan menggunakan APD
2. Siapkan Buffer AVL yang dicampur dengan carrier RNA-AVE dengan formula sbb :

<table>
<thead>
<tr>
<th>Jml Spl</th>
<th>Buffer AVL (mL)</th>
<th>Carrier RNA-AVE (uL)</th>
<th>Jml Spl</th>
<th>Buffer AVL (mL)</th>
<th>Carrier RNA-AVE (uL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.56</td>
<td>5.6</td>
<td>13</td>
<td>7.28</td>
<td>72.8</td>
</tr>
<tr>
<td>2</td>
<td>1.12</td>
<td>11.2</td>
<td>14</td>
<td>7.84</td>
<td>78.4</td>
</tr>
<tr>
<td>3</td>
<td>1.68</td>
<td>16.8</td>
<td>15</td>
<td>8.40</td>
<td>84.0</td>
</tr>
<tr>
<td>4</td>
<td>2.24</td>
<td>22.4</td>
<td>16</td>
<td>8.96</td>
<td>89.6</td>
</tr>
<tr>
<td>5</td>
<td>2.80</td>
<td>28.0</td>
<td>17</td>
<td>9.52</td>
<td>95.2</td>
</tr>
<tr>
<td>6</td>
<td>3.36</td>
<td>33.6</td>
<td>18</td>
<td>10.08</td>
<td>100.8</td>
</tr>
<tr>
<td>7</td>
<td>3.92</td>
<td>39.2</td>
<td>19</td>
<td>10.64</td>
<td>106.4</td>
</tr>
<tr>
<td>8</td>
<td>4.48</td>
<td>44.8</td>
<td>20</td>
<td>11.20</td>
<td>12.0</td>
</tr>
<tr>
<td>9</td>
<td>5.04</td>
<td>50.4</td>
<td>21</td>
<td>11.76</td>
<td>117.6</td>
</tr>
<tr>
<td>10</td>
<td>5.60</td>
<td>56.0</td>
<td>22</td>
<td>12.32</td>
<td>123.2</td>
</tr>
<tr>
<td>11</td>
<td>6.16</td>
<td>61.6</td>
<td>23</td>
<td>12.88</td>
<td>128.8</td>
</tr>
<tr>
<td>12</td>
<td>6.72</td>
<td>67.2</td>
<td>24</td>
<td>13.44</td>
<td>134.4</td>
</tr>
</tbody>
</table>

3. Masukkan 560 uL buffer AVL yang telah dicampur carrier RNA-AVE ke dalam tabung mikrosentrifus 1,5 mL.
4. Tambahkan 140 uL sampel ke dalam tabung tersebut. Vortek dengan hati-hati kurang lebih 15 detik.
5. Inkubasi pada suhu kamar (15-25°C) selama 10 menit.
6. Tambahkan 560 uL etanol, vortek kemudian sentrifus 8000 rpm selama 1 menit.
7. Pindahkan 630 uL campuran tersebut kedalam mini spin column, kemudian sentrifus 8000 rpm selama 1 menit. Pindahkan mini spin column ke dalam tabung penampung 2 mL yang steril.
8. Ulangi langkah No. 6, kemudian tambahkan 500 uL Buffer AW1, kemudian sentrifus selama 1 menit pada 8000 rpm.
9. Pindahkan mini spin column pada tabung penampung yang baru, tambahkan 500 uL AW2, kemudian sentrifus 14.000 rpm selama 3 menit.
10. Pindahkan mini spin column pada tabung sentrifus 1,5 mL yang baru, tambahkan 60 uL Buffer AVE, biarkan pada suhu kamar (15-25°C) selama 1 menit.
11. Sentrifus selama 1 menit pada 8000 rpm, buang mini spin column dan gunakan filtrat RNA untuk pemeriksaan selanjutnya.

4. Penyimpanan Isolat Asam Nukleat
Penyimpanan larutan DNA atau RNA sering menimbulkan masalah. Apabila ingin disimpan dalam waktu lama, Larutan RNA juga dapat disimpan dalam bentuk aliquot dalam -20°C atau -70°C atau jika memungkinkan dalam nitrogen cair (-196°C).

5. Aplikasi Isolasi Asam nukleat (RNA) untuk Diagnostik
a. Isolasi RNA Virus Influenza A1 (H5N1)

Untuk melakukan isolasi RNA virus Influenza AI (H5N1) diperlukan persiapan-persiapan baik spesimen,

1. Spesimen
Spesimen yang digunakan untuk pemeriksan dapat berupa: usap orofaring dan nasal, bilasan nasofaring (untuk anak usia 2 tahun atau kurang), aspirat spesimen sputum, cairan pleura.

2. **Alat dan Bahan yang dibutuhkan untuk isolasi RNA:**

 - QIAamp viral RNA mini kit,
 - RNase inhibitor (ABI) 20U/μL,
 - tabung microcentrifuge steril, 0,5 dan 1,5 mL,
 - Buffer PCR,
 - mikropipet 10, 20, 100 μL,
 - microcentrifuge 13000 rpm,
 - vortex mixer.

3. **Prosedur RT-PCR:**

 a. Tahap ekstraksi RNA: 140 μL spesimen ditambah QIAamp viral RNA, menggunakan random hexamers (konsentrasi akhir 2,5 μM).
 b. Reverse transcriptase ditambahkan, kemudian diinkubasi selama 10 menit pada suhu ruangan, lalu 42° C selama 15 menit. Reaksi dihentikan dengan pemanasan 95° C selama 5 menit lalu didinginkan dengan es.
 c. Dalam proses ini didapatkan cDNA yang akan diperbanyak sebagai template (cetakan) pada proses penggandaan atau amplifikasi selanjutnya. (B. Mulyadi dan Prihartini, 2005).

 b. Isolasi RNA Virus Hepatitis C

 Deteksi yang biasa dilakukan untuk mengetahui adanya infeksi virus adalah dengan penanda serologi. Pada infeksi HCV, diagnosis didasarkan pada adanya anti HCV dalam serum darah, menggunakan teknik Enzyme Linked Sorbent Immune Assay (ELISA) yang dapat dilanjutkan dengan teknik Recombinant Immunoblot Assay (RIBA) untuk meningkatkan spesifikasi.

 Cara deteksi yang lebih sensitif dan spesifik adalah dengan mendeteksi RNA HCV dengan teknik Reverse Transcriptase PCR (RT-PCR). Metode ini sangat penting terutama pada window period, suatu periode yang menunjukkan telah terjadi infeksi HCV tetapi antibodi terbentuk/ terdeteksi. Oleh karena itu PCR merupakan metode diagnostik standar untuk infeksi HCV kronik maupun akut, misalnya pada pasien yang
immunosuppressed seperti resipien transplantasi ginjal. (Lina, MR., dkk., 2004). Berikut akan dijelaskan teknik isolasi RNA HCV dari spesimen serum darah.

Teknik Isolasi RNA HCV dari Spesimen Serum Darah dapat dilakukan dengan prosedur yang dilakukan oleh Lina, MR., dkk., 2004, sebagai berikut:

1. Serum darah yang digunakan berjumlah 50, terdiri 25 serum darah dari laboratorium RS Cipto Mangunkusumo (RSCM) yang telah dideteksi dengan hasil RNA positif secara kuantitatif. Duapuluh lima serum darah yang lain diperoleh dari laboratorium Palang Merah Indonesia (PMI) terdiri dari 20 serum positif dan 5 serum negative dengan teknik ELISA.

2. Metode yang digunakan untuk ekstraksi DNA serum darah tersebut adalah metode BOOM menggunakan Bufer lisis yang terdiri dari larutan guanidine tiosianat, Tris HCl, EDTA dan triton x 100 (bufer lisis L6 dan bufer pencuci L2).

3. Sampel serum darah ditambah dengan bufer lisis L6 dan larutan diatom kemudian divorteks, digoyang dan diinkubasi kemudian disentrifugasi 12.000 rpm.

4. Selanjutnya dicuci dengan bufer pencuci L2 dan diendapkan dengan etanol 70% dan aseton.

5. Pelet dikeringkan dalam waterbath pada suhu 56°C selama 10 menit, kemudian ditambah larutan TE, divorteks, dan diinkubasi pada suhu dan waktu yang sama, kemudian disentrifugasi pada 12.000 rpm.

6. Supernatant yang mengandung RNA HCV dipisahkan yang selanjutnya akan digunakan pada proses reverse transkripsi untuk pembuatan cDNA. (Lina, MR., dkk., 2004).

Latihan

1) Jelaskan jenis-jenis metode isolasi RNA!
2) Jelaskan aplikasi isolasi asam nukleat untuk diagnostik!

Petunjuk Jawaban Latihan

Untuk membantu Anda dalam mengerjakan soal latihan tersebut silakan pelajari kembali materi tentang :

1) Jenis-Jenis Metode Isolasi RNA
2) Aplikasi Isolasi Asam Nukleat untuk Diagnostik
Ringkasan

1. Isolasi RNA bertujuan untuk memisahkan RNA dari zat lain sehingga dihasilkan RNA murni. Prinsip isolasi RNA meliputi tiga hal, yaitu: ekstraksi, pemurnian, dan presipitasi. Secara umum terdapat tiga dasar persyaratan isolasi RNA, yaitu: melisiskan membran sel untuk mengekspos RNA; pemisahan RNA dari zat-zat dan molekul lainnya seperti DNA, lipid, protein, dan karbohidrat; dan pemulihan RNA dalam bentuk murni. Terdapat beberapa metode isolasi RNA yaitu metode guanidine tiosianat, metode modifikasi guanidine tiosianat, metode kromatografi selulosa oligo-deoxythymine (dT), metode trizol, dan metode langsung menggunakan reagen kit.

2. Setelah isolasi RNA dilakukan, maka proses selanjutnya adalah pengukuran konsentrasi RNA yang telah diisolasi menggunakan spektrofotometer pada panjang gelombang λ260. Kemudian dilakukan sintesis copy DNA (cDNA) menggunakan Reverse Transriptase PCR (RT-PCR). RT-PCR berbeda dengan PCR biasa karena ada penambahan enzim Reverse Transriptase pada proses PCR-nya. Penambahan enzim Reverse Transriptase bertujuan agar RNA yang telah diisolasi dapat digandakan dalam bentuk cDNA. Proses PCR ini tidak jauh berbeda dengan PCR pada umumnya, yaitu meliputi denaturasi, annealing, dan elongasi. Setelah itu, proses dilanjutkan dengan identifikasi menggunakan real time PCR maupun elektroforesis gel agarose.

3. Aplikasi isolasi asam nukleat untuk diagnostic diantaranya ialah untuk isolasi DNA dalam isolat Escherichia coli Multi Drug Resistance (E. coli MDR), isolasi DNA Mycobacterium tuberculosis (MTB), dan isolasi RNA Virus Influenza AI (H5N1) serta isolasi RNA virus Hepatitis C. Isolasi DNA atau RNA ini menjadi tahap awal yang penting dalam menegakkan diagnosis penyakit yang disebabkan oleh bakteri/ virus tersebut.

Tes 2

1) RNA hasil isolasi selanjutnya diukur menggunakan spektrofotometer pada panjang gelombang....
 A. 200
 B. 250
 C. 260
 D. 265

2) Untuk mengetahui integritas RNA dapat dicek dengan elektroforesis gel agarose, spesies RNA yang terbanyak (molekul rRNA) pada eukariot berukuran....
 A. 23S dan 16S
 B. 16S dan 18S
 C. 23S
 D. 18S dan 28S
3) Pada proses netralisasi suspensi E. Coli MDR Ciprofloxacin, pencampuran sempurna ditandai dengan suspensi....
 A. tidak berwarna
 B. bewarna biru dan homogen
 C. berwarna biru dan endapan berwarna coklat
 D. tidak berwarna dan endapan berwarna coklat

4) Berikut ini metode-metode yang tidak digunakan untuk isolasi RNA,
 A. guanidine tiosianat
 B. CTAB (Cetyl Trimethyl Ammonium Bromide)
 C. kromatografi selulosa oligo-deoxythymine (dT)
 D. trizol

5) Senyawa yang paling efektif dalam menginaktivasi RNase selama proses ekstraksi adalah....
 A. guanidin tiosianat
 B. etanol dingin
 C. DNase
 D. kloroform

6) Agar RNA yang telah diisolasi dapat digandakan dalam bentuk cDNA, maka perlu dilakukan penambahan enzim....
 A. DNA polimerase
 B. Ligase
 C. Reverse Transcriptase
 D. RNase

7) Molekul mRNA dapat diisolasi dari RNA total dengan menggunakan....
 A. guanidin tiosianat
 B. ultra sentrifugasi
 C. Ammonium-Choride-Potassium (ACK)
 D. selulosa oligo (dT)

8) Salah satu kriteria pengambilan spesimen untuk isolasi RNA virus Influenza AI (H5N1) ialah pengambilan spesimen harus dilakukan pada....
 A. saat demam
 B. hari ke-1 setelah timbul gejala
 C. hari ke 2–14 setelah timbul gejala
 D. setelah demam turun
9) Beberapa molekul RNA pada sel eukariotik yang berperan penting dalam proses sintesis protein, yaitu mRNA, tRNA, rRNA, dan snRNA. mRNA (messenger RNA) berfungsi....
 A. mentranslasi kodon-kodon mRNA menjadi asam amino
 B. mempunyai peran struktural dan katalitik (ribozim) dalam ribosom
 C. menyambung pra-mRNA dalam nukleus eukariotik
 D. sebagai pembawa informasi yang menentukan urutan asam amino protein dari DNA ke ribosom

10) Pada isolasi RNA metode guanidine tiosianat, penambahan larutan fenol/kloroform pada larutan guanidine tiosianat membuat pH larutan menjadi asam, sehingga RNA berada pada fase cair yang ditunjukkan nomor....
 A. (a) C. (c)
 B. (b) D. (d)

Periksa tingkat penguasaan Anda dengan mencocokkan jawaban Anda dengan kunci jawaban tes yang ada di bagian akhir bab ini. Gunakan rumus berikut:

Tingkat Penguasaan = \(\frac{\text{Jumlah jawaban benar}}{\text{Jumlah Soal}} \times 100\% \)

Arti tingkat penguasaan: 90 - 100% = baik sekali
80 - 89% = baik
70 - 79% = cukup
< 70% = kurang
Kunci Jawaban Tes

Tes 1
1. B
2. D
3. B
4. B
5. C
6. C
7. A
8. A
9. A
10. D

Tes 2
1. C
2. D
3. B
4. B
5. A
6. C
7. D
8. C
9. D
10. B
Glosarium

Asam nukleat: Polinukleotida yang tersusun dari monomernya yaitu nukleotida. Nukleotida tersusun dari gugus fosfat, gula aldopentosa, dan basa nitrogen; dan dihubungkan dengan ikatan fosfodiester. Terdapat dua jenis asam nukleat, yaitu deoxyribonucleic acid (DNA) dan ribonucleic acid (RNA).

DNA: Suatu materi genetik yang terdapat pada semua makhluk hidup yang diwarisi secara turun menurun. Struktur DNA terdiri dari gugus fosfat, gula deoksiribosa dan basa nitrogen. Informasi yang dibawa oleh DNA bergantung pada urutan basa nitrogen yang terdiri dari Adenin (A), Timin (T), Guanin (G), dan Sitosin (C). Basa pada DNA selalu berpasangan yaitu A-T dan G-C.

Dnase: DNase merupakan enzim yang dapat memotong DNA untai-tunggal atau DNA untai-ganda. DNase dibedakan menjadi 2 macam, yaitu: (1) eksonuklease, yaitu Dnase yang memotong DNA dari ujung molekul 5' atau dari ujung 3', dan (2) endonuklease, yaitu Dnase yang memotong DNA dari bagian dalam untai DNA.

Ekstraksi: Suatu proses pemisahan satu atau lebih komponen dari suatu campuran homogen menggunakan pelarut cair (solvent) sebagai separating agent.

Elusi: Proses pemisahan fragmen DNA target dari campuran fragmen-fragmen DNA pengotornya.

Gel agarose: Gel polisakarida yang digunakan untuk elektroforesis DNA atau protein untuk mengukur ukuran.

Genom: Jumlah kromosom atau materi genetik dalam susunan haploid. Genom terdapat dalam sel setiap individu suatu spesies.

Isolasi: Proses untuk mendapatkan suatu produk yang murni dari campuran reaksi (bebas dari pelarut, reagen yang berlebihan).

Kromosom: Benda-benda halus berbentuk lurus seperti batang atau bengkok dan terdiri dari zat yang mudah mengikat zat warna di dalam nukleus. Kromosom berfungsi membawa sifat individu dan membawa informasi genetik karena di dalam kromosom terdapat gen.

mRNA: Messenger RNA merupakan asam nukleat yang berbentuk pita tunggal dan merupakan RNA terbesar atau terpanjang yang bertindak sebagai pola cetakan pembentuk polipeptida. Fungsi utama mRNA adalah membawa kode-kode genetik dari DNA ke ribosom. mRNA juga berfungsi sebagai cetakan dalam sintesis protein.

Plasmid: Molekul DNA utas ganda sirkuler (tak berujung) yang berukuran kecil yang terdapat di dalam sitoplasma, dan dapat melakukan...
replikasi secara autonom. Karakteristik yang penting dari plasmid adalah dapat melakukan replikasi, terdapat di luar kromosom, dan secara genetik dapat ditransfer dengan stabil.

Proteinase-K : Enzim hidrolitik yang bekerja memutus ikatan-ikatan peptida pada protein.

RNA : Polimer panjang tidak bercabang yang terdiri dari nukleotida yang bersambung dengan ikatan 3' → 5' fosfodiester. Unit gula dalam RNA berupa ribosa, basa nitrogen dalam RNA adalah urasil, adenin, guanin, dan sitosin.

RNase : Enzim yang berfungsi untuk menghancurkan RNA.

rRNA : *Ribosom RNA* merupakan RNA dengan jumlah terbanyak dan penyusun ribosom. RNA ini berupa pita tunggal, tidak bercabang, dan fleksibel. Lebih dari 80% RNA merupakan rRNA. Fungsi rRNA sampai sekarang masih belum banyak diketahui, tetapi diduga memiliki peranan penting dalam proses sintesis protein.

snRNA : *Small Nuclear RNA*mempunyai peran struktural dan katalitik dalam splicosom, yaitu kompleks dari protein dan RNA yang menyambung pra-mRNA dalam nukleus eukariotik.

tRNA : *Transfer RNA* merupakan RNA terpendek yang bertindak sebagai penerjemah kodon dari mRNA. Selain itu, tRNA berfungsi mengikat asam-asam amino yang akan disusun menjadi protein dan mengangkutnya ke ribosom. Pada tRNA terdapat bagian yang berhubungan dengan kodon yang disebut antikodon dan bagian yang berfungsi sebagai pengikat asam amino.
Daftar Pustaka

Prasetyo, A. A. 2009. Materi Asistensi Biomedik. FK UNS

Presto™ MinigDNA Bacteria Kit. Instruction Manual. Ver. 02. 10. 17

QIAmp®Viral RNA Mini Handbook. 2014. QIAGEN

University of Queensland (QU). 2003. Plant genomic DNA extraction. 5 hlm.

University of Utah (=UU). 2015. Frequently asked question. 1 hlm.
http://learn.genetics.utah.edu/content/labs/extraction/hoto/faq/. 10 Mei 2015, pk 20.25.

BAB VIII
TEKNIK AMPLIFIKASI ASAM NUKLEAT

Dr. Betty Nurhayati, M.Si.

PENDAHULUAN

Gambar 8.1 Teknik Amplifikasi PCR dan Penemunya

Coba perhatikan beberapa gambar di atas. Apakah Anda mengenal tokoh dalam gambar tersebut? Dapatkah Anda menjelaskan bagaimana hubungan tokoh tersebut dengan analog mesin fotocopi di sampingnya?

Baiklah saudara mahasiswa, pada kesempatan ini mari kita bersama-sama mempelajari tentang Teknik Amplifikasi DNA. Materi ini akan sangat mudah dipelajari apabila Anda telah menguasai bab sebelumnya yaitu tentang Teknik Dasar Analisis Biologi Molekuler, Teknik Isolasi Asam Nukleat, DNA dan mekanisme kerjanya, serta teknik Replikasi. Apakah Anda masih ingat tentang struktur DNA dan konsep replikasi pada sel prokaryot maupun sel eukaryot. Baiklah mari bersama-sama kita review kembali sekilas tentang Replikasi DNA.

Replikasi DNA adalah proses penggandaan rantai ganda DNA. Pada sel, replikasi DNA terjadi sebelum pembelahan sel. Sel prokaryot terus-menerus melakukan replikasi
DNA. Pada sel eukaryot, waktu terjadinya replikasi DNA sangatlah diatur, yaitu pada fase S dalam siklus sel, sebelum mitosis atau meiosis I. Penggandaan tersebut memanfaatkan enzim DNA polimerase yang membantu pembentukan ikatan antara nukleotida-nukleotida penyusun polimer DNA. Replikasi DNA tersebut terjadi secara invivo yaitu terjadi di dalam organisme baik pada sel prokariot maupun eukariot.

Untuk mengingatkan kembali tentang konsep replikasi DNA, silakan Anda pelajari topik tentang replikasi. Untuk memudahkan Anda mempelajari materi ini, silakan mengunduh beberapa video terkait pemelajaran replikasi tersebut di youtube, Google.

Seiring perkembangan IPTEK terutama tentang biologi sel dan biologi molekuler pada saat ini, proses replikasi DNA dapat pula dilakukan secara in vitro (di dalam tabung) dalam proses yang disebut reaksi berantai polimerase atau yang lebih umum dikenal dengan istilah (Polymerase Chain Reaction/ PCR).

Setelah mempelajari materi Teknik Amplifikasi Asam Nukleat (dengan teknik Teknik PCR), Anda diharapkan mampu memilih salah satu teknik dasar analisis biologi molekuler. Teknik PCR ini adalah teknik yang banyak digunakan dalam membantu diagnosis penyakit melalui pemeriksaan laboratorium.

Teknik PCR merupakan salah satu proses lanjutan dari teknik isolasi asam nukleat. Dengan demikian sangat penting dan sangat berkaitan erat antara kualitas teknik isolasi asam nukleat dari suatu spesimen dengan hasil amplifikasi asam nukleat dari hasil isolate spesimen tersebut. Oleh karena itu, Anda sebagai seorang ATLM sangat penting mempelajari tentang teknik Amplifikasi (PCR), untuk menunjukkan bahwa Anda adalah ATLM yang kompeten.

Materi pembelajaran tentang teknik amplifikasi PCR sangatlah luas. Sementara waktu pembelajaran yang tersedia terbatas. Oleh karena itu, modul ini akan disajikan materi-materi yang penting diketahui, dipelajari dan dipahami agar sesuai dengan kompetensi yang diharapkan pada akhir pembelajaran topik ini.

Ruang lingkup pembelajaran tentang bab ini adalah: (1) Konsep PCR, (2) Komponen, alat, bahan dan cara kerja PCR (3) Jenis-jenis modifikasi Teknik PCR, (4) Aplikasi PCR dalam menegakkan diagnosis penyakit. Dengan mempelajari modul ini, Anda diharapkan memiliki kemampuan untuk memilih teknik PCR dalam menegakkan diagnosis laboratorium dalam hal:

1. menjelaskan konsep PCR;
2. menjelaskan Komponen, alat, bahan dan cara kerja PCR;
3. membedakan jenis-jenis Teknik PCR;
4. memilih teknik PCR dalam mendukung diagnosis klinis identifikasi komponen PCR

Dalam mempelajari modul ini diharapkan Anda telah memiliki bekal pengetahuan dan pemahaman mengenai beberapa kompetensi dalam replikasi dan teknik diagnostik molekular.

Selamat belajar. Semoga Anda berhasil!
Topik 1
Konsep Polymerase Chain Reaction (PCR)

Gambar 8.2 Perintis dan Pemenang Nobel Teknik PCR Dr. Kary Mullis

Masalah utama dalam analisis gen adalah sulitnya mendapatkan molekul DNA spesifik yang menjadi target, terutama dari mamalia, dalam jumlah yang memadai untuk dideteksi/dikuantisasi. Sebelum ditemukan teknologi PCR, untuk memperbanyak (memfotokopi) molekul DNA para peneliti harus menunggu hasil kloning selama berhari-hari. Dengan menggunakan teknik PCR, proses fotokopi DNA tersebut hanya memerlukan waktu beberapa jam saja.

Agar Anda lebih memahami tentang konsep PCR, marilah kita pelajari dan cermati bersama tentang pengertian, prinsip dasar, komponen PCR serta faktor- faktor yang mempengaruhi keberhasilan PCR.

1. Pengertian PCR
 Pemahaman tentang konsep PCR akan sangat baik apabila diawali dengan pengertian terlebih dahulu. Terdapat beberapa pengertian PCR menurut beberapa referensi. Silakan Anda pelajari beberapa pengertian PCR dari berbagai ahli, berikut ini:
 a. sintesis dan amplifikasi enzimatik invitro pada sekuen DNA spesifik. (Bermingham dan Luettich, 2003).
 b. suatu metode enzimatis untuk melipatgandakan secara eksponensial suatu sekuen nukleotida tertentu dengan cara invitro. (Yuwono, 2006).
 c. suatu proses sintesis enzimatik untuk mengamplifikasi nukleotida secara in vitro.(Fatchiyah, dkk., 2012).
 d. suatu metode enzimatik untuk amplifikasi DNA dengan cara invitro (Yusuf, 2010).
 e. suatu metode biomolekuler yang canggih untuk perbanyak segmen DNA spesifik in vitro, melalui suatu proses enzimatik dengan menggunakan enzim DNA polymerase dan primer nukleotida yang akan berhibridisasi dengan bagian DNA dari dua arah yang berlawanan. (Elza dan Solachuddin, 1998).
 f. suatu teknik yang melibatkan beberapa tahap yang berulang (siklus) dan pada setiap siklus terjadi duplikasi jumlah target DNA untai ganda. (Darmo Handoyo dan Ari Rudiretna, 2001).
 g. teknik biologi molekuler untuk mengamplifikasi sekuen spesifik menjadi ribuan sampai jutaan kopi sekuen DNA spesifik menjadi ribuan sampai jutaan kopi sekuen DNA. (Dyah Ayu dan Dharmayanti, 2014).
 h. cara efektif untuk memperoleh kuantitas urutan nukleotida untaian DNA secara in vitro. (Hutapea, dkk., 2015).
 i. salah satu teknik dalam biologi molekuler untuk mengamplifikasi atau menggandakan sejumlah kecil DNA secara invitro menggunakan sistim enzimatik dan suhu. (Maftuchah, dkk., 2014).

Beberapa pengertian PCR yang sudah dijelaskan di atas menunjukkan pengertian yang hampir sama. Apabila digabungkan dari beberapa referensi di atas, intinya adalah PCR merupakan suatu teknik atau metode atau cara perbanyak (replikasi/ amplifikasi) fragmen DNA secara enzimatik tanpa menggunakan organisme atau secara invitro, yang melibatkan beberapa tahap yang berulang (siklus) dan pada setiap siklus terjadi duplikasi jumlah target DNA untai gandasampai jutaan kopi fragmen DNA.

Teknik amplifikasi DNA menggunakan PCR dapat meningkatkan jumlah urutan DNA menjadi ribuan bahkan jutaan kali dari jumlah semula, sekitar 10⁶-10⁷ kali. Setiap urutan basa nukleotida yang diamplifikasi akan menjadi dua kali jumlahnya. Pada setiap n siklus PCR akan diperoleh 2ⁿ kali banyaknya DNA target.

<table>
<thead>
<tr>
<th>Siklus ke-</th>
<th>Jumlah Relatif Molekul</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>10</td>
<td>1.024</td>
</tr>
<tr>
<td>20</td>
<td>1.048.576</td>
</tr>
<tr>
<td>30</td>
<td>1.073.741.824</td>
</tr>
</tbody>
</table>

Penggunaan PCR telah berkembang secara cepat seiring dengan perkembangan biologi molekuler. PCR digunakan untuk identifikasi penyakit genetik, infeksi oleh berbagai mikroorganisme (virus, bakteri, jamur/fungi, parasit), *Genetic profiling in forensic, legal and bio-diversity applications*, biologi evolusi, *Site-directed mutagenesis of genes* dan *mRNA Quantitation* pada sel ataupun jaringan.

Saudara sekalian, Anda sudah mempelajari tentang pengertian PCR. Semoga Anda dapat memahami tahap demi tahap dari pembelajaran ini, sehingga Anda dapat mencapai kompetensi yang diharapkan. Apabila ada hal-hal yang belum jelas atau belum Anda pahami, Anda dapat mencatat pertanyaan di buku kerja. Anda dapat bertanya kepada pembimbing/dosen pengampu pada saat pertemuan tatap muka.

2. **Prinsip Dasar Amplifikasi PCR**

Apakah saudara sekalian masih ingat tentang tujuan PCR? Tujuan PCR adalah menghasilkan sejumlah salinan dari suatu fragmen DNA. Untuk sintesis dan penggandaan DNA tersebut berlangsung di luar organisme, tepatnya di dalam suatu mesin PCR. Pada dasarnya prinsip yang terjadi dalam sintesis DNA tersebut sama dengan proses replikasi DNA yang terjadi di dalam sel (*in vivo*). Anda sangat dianjurkan untuk dapat mempelajari bagaimanakah proses replikasi DNA dalam beberapa sumber atau referensi selain modul ini.
Dalam proses PCR, materi pokok berupa DNA untai ganda hasil isolasi suatu organisma, di antaranya direaksikan dengan komponen-komponen PCR yang terdiri dari: enzim DNA polymerase, deoxynucleoside triphosphate (dNTPs), MgCl₂, dan primer (potongan pendek DNA untai tunggal) yang mengawali sintesis DNA. Setelah larutan mix PCR tersebut homogen, larutan tersebut siap direaksikan dalam mesin PCR. Sub topik tentang komponen PCR akan dijelaskan lebih lanjut.

Mesin PCR (Thermal cycler) pertama kali dipublikasikan pada tahun 1986. Pada saat itu DNA polimerase yang digunakan masih belum termostabil, dan harus ditambahkan di setiap siklusnya. Kelemahan lain, temperature 37°C yang digunakan bias dan menyebabkan non-specific priming, sehingga dapat menghasilkan produk yang tidak dikehendaki. Untuk menutupi kelemahan tersebut, tahun 1988 dikembangkan enzim Taq DNA polymerase yang disolasi dari bakteri Thermus aquaticus (Taq). Enzim ini tahan panas sampai temperatur mendidih 100°C, dan aktivitas maksimal pada temperatur 92°C -95°C.

Prinsip dasar PCR adalah proses siklus yang berulang meliputi denaturasi, annealing dan ekstensi/ elongasi oleh enzim DNA polimerase. PCR dimulai dengan cetakan DNA dalam jumlah yang sedikit (nanogram= ng), kemudian setelah mengalami beberapa siklus amplifikasi, jumlah copy DNA akan menjadi jutaan kali lipat. (Maftuchah, 2014). Sepasang primer oligonukleotida yang spesifik digunakan untuk membuat hibrid dengan ujung-5’ menuju ujung-3’ untai DNA target dan akan mengamplifikasi urutan yang diinginkan. Dasar siklus PCR umumnya terdiri dari 30-35 siklus meliputi denaturasi (95°C) selama 30 detik, annealing (55–60°C) selama 30 detik dan ekstensi (72°C), waktu tergantung panjang pendeknya ukuran DNA yang diinginkan sebagai produk amplifikasi. Peningkatan jumlah siklus PCR di atas 35 siklus tidak memberikan efek yang positif. Bagaimanakah gambaran siklus dasar PCR? Perhatikan profil temperatur (suhu) yang digunakan pada PCR pada Gambar 8.3 A dan siklus dasar PCR seperti terlihat pada Gambar 8.3 B.
Setelah memperhatikan gambar profil suhu dan siklus dasar yang terjadi pada proses PCR, jawablah pertanyaan berikut: Dapatkan Anda sebutkan ada berapa jenis suhu yang digunakan dan proses apa yang terjadi pada masing-masing suhu tersebut?

……
……

Setelah Anda dapat menjelaskan profil suhu dan proses yang terjadi dalam siklus PCR, ikuti pembahasan lengkap dari masing-masing proses yang terjadi pada masing-masing suhu. Silahkan pelajari dan simak pembahasan berikut ini.

Terdapat tiga tahap penting dalam proses PCR yang selalu terulang dalam 30-40 siklus dan berlangsung dengan cepat, yaitu: (1) denaturasi (95°C), (2) annealing (55–60°C) dan (3) ekstensi (72°C). Penjelasan setiap tahap tersebut silakan Anda pelajari berikut ini.

a. Denaturasi untai ganda DNA

Bagaimanakah proses denaturasi terjadi? Simaklah ilustrasi proses tersebut pada Gambar 8.4 tentang proses denaturasi pada PCR.

Tahap pertama pada sistem amplifikasi PCR adalah denaturasi DNA sampel dengan menaikkan suhu dalam tabung reaksi sampai 95°C. Tabung reaksi ini berisi DNA target, dua primer oligonukleotida dalam jumlah berlebih, *Taq DNA polymerase* yang tahan panas, keempat deoksiribonukleotida dan bufer yang mengandung Mg. Selama proses denaturasi yang berlangsung dalam beberapa menit, untai ganda DNA (dsDNA) mencair dan ikatannya terbuka sehingga terjadi pemisahan untai ganda DNA menjadi untai tunggal DNA (ssDNA).

Denaturasi untai ganda DNA merupakan langkah yang kritis selama proses PCR. Suhu yang tinggi pada awal proses menyebabkan pemisahan untai ganda DNA. Denaturasi DNA merupakan proses pembukaan DNA untai ganda menjadi DNA untai tunggal. Ini biasanya berlangsung sekitar 1-2 menit, untuk meyakinkan bahwa molekul DNA terdenaturasi menjadi DNA untai tunggal. Denaturasi yang tidak lengkap
mengakibatkan DNA mengalami renaturasi (membentuk DNA untai ganda lagi) secara cepat, dan ini dapat mengakibatkan gagalnya proses PCR. Adapun waktu denaturasi yang terlalu lama dapat mengurangi aktivitas enzim Taq DNA polymerase. Aktivitas enzim tersebut mempunyai waktu paruh lebih dari 2 jam, 40 menit, 5 menit masing-masing pada suhu 92,5; 95 dan 97,5ºC. Temperatur pada tahap denaturasi pada kisaran 92-95ºC, suhu 94ºC merupakan pilihan standar.

Gambar 8.4 Tahap Denaturasi

b. **Primer Annealing**

Bagaimanakah proses primer annealing terjadi? Perhatikan ilustrasi proses tersebut pada Gambar 8.5 tentang proses primer annealing pada PCR.

Optimalisasi suhu annealing dimulai dengan menghitung Melting Temperature (Tm) dari ikatan primer dan cetakan DNA. Terdapat beberapa cara perhitungan untuk memperoleh Tm. Cara termudah menghitung untuk mendapatkan melting-temperatur yang tepat menggunakan rumus Tm = ([G+C]x4) +([A+T]x2). Suhu annealing biasanya 5ºC di bawah Tm primer yang sebenarnya. Secara praktis, Tm ini dipengaruhi oleh komponen buffer, konsentrasi primer dan cetakan DNA.

Biologi Sel dan Molekuler

Kriteria yang umum digunakan untuk merancang primer yang baik adalah bahwa primer sebaiknya berukuran 18 – 25 basa, mengandung 50-60% G+C dan untuk kedua primer tersebut sebaiknya sama. Sekuens DNA dalam masing-masing primer itu sendiri juga sebaiknya tidak saling berkomplemen, karena hal ini akan mengakibatkan terbentuknya struktur sekunder pada primer tersebut dan mengurangi efisiensi PCR.

Gambar 8.5. Tahap Primer Annealing

c. Ekstensi/ Elongasi

Bagaimanakah proses DNA Polymerase extension terjadi? Pelajari ilustrasi proses nya pada Gambar 8.6 tentang proses DNA Polymerase extension pada PCR.

Tahap ketiga pada sistem amplifikasi PCR adalah DNA Polymerase extension. Pada tahap extension ini terjadi proses pemanjangan untai baru DNA, dimulai dari posisi primer yang telah menempel di urutan basa nukleotida DNA target yang akan bergerak dari ujung 5’ menuju ujung 3’ dari untai tunggal DNA. Proses pemanjangan atau pembacaan informasi DNA yang diinginkan sesuai dengan panjang urutan basa nukleotida yang ditarik untuk memerlukan waktu 1 menit. Sedangkan bila kurang dari 500pb hanya 30 detik dan pada kisaran 500 pb tapi kurang dari 1Kb perlu waktu 45 detik, namun apabila lebih dari 1Kb akan memerlukan waktu 2 menit di setiap siklusnya. Adapun temperatur ekstensi berkisar antara 70-72°C. (Fatchiyah dkk., 2012).

Gambar 8.6 DNA Polymerase Extension
Sebagai gambaran berikut akan disajikan Tabel 8.2 mengenai contoh pengaturan suhu dan waktu untuk setiap siklus pada sistem amplifikasi DNA.

Tabel 8.2 Contoh Pengaturan Suhu dan Waktu untuk Setiap Siklus pada Amplifikasi PCR

<table>
<thead>
<tr>
<th>Siklus</th>
<th>Denaturasi</th>
<th>Annealing</th>
<th>Polimerisasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pertama 1</td>
<td>10 menit, 94°C</td>
<td>2 menit, 55°C</td>
<td>2 menit, 72°C</td>
</tr>
<tr>
<td>2-29</td>
<td>1 menit, 94°C</td>
<td>2 menit, 55°C</td>
<td>2 menit, 72°C</td>
</tr>
<tr>
<td>Terakhir</td>
<td>10 menit, 94°C; Ditahan pada 4°C</td>
<td>2 menit, 55°C</td>
<td>10 menit, 72°C</td>
</tr>
</tbody>
</table>

Semua tahap dan perubahan suhu ini dilakukan pada tabung reaksi PCR yang diinkubasi pada alat pemanas terprogram dan otomatis. (Sudjadi, 2008). Gambaran skema sederhana satu siklus amplifikasi DNA pada Gambar 8.7 dan gambaran proses amplifikasi pada Gambar 8.8.

Gambar 8.7 Skema sederhana dari satu siklus PCR yang melibatkan denaturasi, annealing dan ekstensi. (Ds, beruntai ganda).(Wilson, K. and Walker, J. 2010)
3. Komponen PCR

Setelah mempelajari prinsip dasar PCR, seorang ATLM dituntut pula untuk memahami hal penting lainnya yaitu tentang komponen PCR. Pada proses PCR diperlukan empat komponen utama, yaitu: (1) DNA cetakan (template) yang merupakan fragmen DNA yang akan dilipatgandakan, (2) oligonukleotida primer spesifik yaitu suatu sekuen oligonukleotida pendek (15-25 basa nukleotida) yang digunakan untuk mengawali sintesis rantai DNA, (3) deoksiribonukleotida trifosfat (dNTP) terdiri atas dATP, dCTP, dGTP, dTTP dan (4) enzim DNA polimerase yaitu enzim yang melakukan katalisi reaksi sintesis rantai DNA yang thermostabil.

Komponen lain dalam PCR yang juga penting adalah senyawa buffer PCR, Mg$^{2+}$, dan thermal cycler. Berikut penjelasan rinci tentang masing-masing komponen inti PCR yaitu DNA cetakan, primer, nukleotida dan DNA polymerase serta komponen lainnya berikut ini.

a. DNA cetakan (Template DNA)

Di antara komponen PCR adalah DNA cetakan. Fungsi DNA cetakan di dalam proses PCR adalah sebagai cetakan untuk pembentukan molekul DNA baru yang sama. DNA
cetakan ini dapat berupa DNA kromosom, DNA plasmid ataupun fragmen DNA apapun asal di dalam DNA cetakan tersebut mengandung fragmen DNA target yang dituju.

Penyiapan DNA cetakan untuk proses PCR sudah dipelajari pada Bab 7 yaitu tentang Teknik Isolasi DNA dengan metode lisis sel, isolasi DNA kromosom atau DNA plasmid dengan menggunakan metode standar yang ada. Pemilihan metode yang digunakan di dalam penyiapan DNA cetakan tergantung dari tujuan eksperimen. Pembuatan DNA cetakan dengan menggunakan metode lisis dapat digunakan secara umum, dan metode ini merupakan cara yang cepat dan sederhana untuk pendedahan DNA kromosom ataupun DNA plasmid.

Prinsip isolasi DNA kromosom atau DNA plasmid adalah pemecahan dinding sel, yang diikuti dengan pemisahan DNA kromosom / DNA plasmid dari komponen-komponen lain. Dengan demikian akan diperoleh kualitas DNA yang lebih baik dan murni.

Kemurnian DNA target sangat penting, karena ketidakmurnian suspensi DNA dapat mempengaruhi reaksi amplifikasi dan dapat menghambat kerja enzim DNA polymerase. Meskipun demikian pada kondisi tertentu, amplifikasi PCR masih dapat bekerja dalam suspensi kasar seperti koloni bakteri. Bakteri tidak perlu diekstraksi dan secara langsung dicampurkan pada larutan kit PCR sebagai cetakan.

Ukuran target amplifikasi biasanya kurang dari 1000 pasangan basa (bp, base pair) atau 1kb, Hasil amplifikasi yang efisien antara 100-400bp. Walaupun kemungkinan hasil amplifikasi lebih dari 1 Kb tetapi prosesnya kurang efisien, karena produk yang panjang rentan terhadap inhibitor yang mempengaruhi kerja enzim DNA polimerase dan waktu yang diperlukan lebih lama. Hal ini dapat menyebabkan hasil amplifikasi yang tidak diinginkan.

Pemilihan target yang akan diamplifikasi perlu memperhatikan genetik dari daerah/urutan nukleotida yang ditargetkan. Perubahan atau hilangnya sebagian urutan target akan berakibat pada hilangnya reaktivitas. Bagian dari plasmid yang membawa sifat virulensi suatu bakteri adalah salah satu contoh elemen genetik yang potensial tidak stabil. Elemen genetik ini bisa hilang saat isolasi atau pemindahan serial. Untuk mengatasi hal ini, sebaiknya amplifikasi segera dilakukan setelah isolasi DNA selesai.

b. **Primers**

Keberhasilan suatu proses PCR sangat tergantung dari primer yang digunakan. Di dalam proses PCR, primer berfungsi sebagai pembatas fragmen DNA target yang akan diamplifikasi dan sekaligus menyediakan gugus hidroksi (-OH) pada ujung 3’ yang diperlukan untuk proses eksistensi DNA. Perancangan primer dapat dilakukan berdasarkan urutan DNA yang telah diketahui ataupun dari urutan protein yang dituju. Data urutan DNA atau protein bisa didapatkan / didownload dari database GenBank. Apabila urutan DNA maupun urutan protein yang dituju belum diketahui maka perancangan primer dapat didasarkan pada hasil analisis homolog dari urutan DNA atau protein yang telah diketahui mempunyai hubungan kekerabatan yang terdekat. Ketentuan penyusunan primer adalah primer disusun dari urutan oligonukleotida sepanjang 15-32 pasangan basa (pb) pada ujung -5’ pita DNA cetakan maupun komplemennya.
Dalam melakukan perancangan primer, Anda perlu memenuhi kriteria-kriteria sebagai berikut:

1) Panjang primer
 Umumnya panjang primer berkisar antara 18 – 30 pasangan basa. Primer dengan panjang kurang dari 18 pasangan basa akan menjadikan spesifisitas primer rendah. Untuk ukuran primer yang pendek kemungkinan terjadinya mispriming (penempelan primer di tempat lain yang tidak diinginkan) tinggi. Hal ini akan menyebabkan berkurangnya spesifisitas dari primer tersebut, dan nantinya akan berpengaruh pada efektifitas dan efisiensi proses PCR. Sedangkan untuk panjang primer lebih dari 30 pasangan basa, tidak akan meningkatkan spesifisitas primer secara bermakna dan ini akan menyebabkan lebih mahal.

2) Komposisi primer
 Dalam merancang suatu primer, Anda juga perlu memperhatikan komposisinya. Rentetan/urutan nukleotida yang sama perlu dihindari karena hal ini dapat menurunkan spesifisitas primer yang dapat memungkinkan terjadinya mispriming di tempat lain. Kandungan (G+C) (% jumlah G dan C) sebaiknya sama atau lebih besar dari kandungan (G+C) DNA target karena primer dengan % (G+C) rendah diperkirakan tidak akan mampu berkompetisi untuk menempel secara efektif pada tempat yang dituju. Hal ini akan menurunkan efisiensi proses PCR. Selain itu, urutan nukleotida pada ujung 3’ sebaiknya G atau C. Nukleotida A atau T lebih toleran terhadap mismatch dari pada G atau C, dengan demikian akan dapat menurunkan spesifisitas primer.

3) Melting temperature (Tm)
 Melting temperature (Tm) adalah temperatur di mana 50 % untai ganda DNA terpisah. Pemilihan Tm suatu primer sangat penting karena Tm primer akan berpengaruh sekali di dalam pemilihan suhu annealing proses PCR. Tm berkaitan dengan komposisi primer dan panjang primer. Secara teoritis Tm primer dapat dihitung dengan menggunakan rumus \([2(A+T) + 4(C+G)] \). Sebaiknya Tm primer berkisar antara 50 – 65°C.

4) Interaksi primer-primer
 Interaksi primer-primer seperti self-homology dan cross-homology harus dihindari. Demikian juga dengan terjadinya mispriming pada daerah lain yang tidak dikenali. Hal ini dapat menyebabkan spesifisitas primer menjadi rendah dan konsentrasi primer yang digunakan menjadi berkurang selama proses karena terjadinya mispriming. Kedua ini akan berpengaruh pada efisiensi proses PCR.

c. Nucleotides/ Nukleotida (dNTPs)
 Nukleotida (dNTPs) merupakan suatu campuran yang terdiri atas dATP (deoksiadenosin trifosfat), dTTP (deoksitimidin trifosfat), dCTP (deoksitisitidin trifosfat), dan dGTP (deoksiguanosin trifosfat). Dalam proses PCR, dNTPs bertindak sebagai building block DNA yang diperlukan dalam proses ekstensi DNA. dNTP akan menempel pada gugus
–OH pada ujung 3’ dari primer dan membentuk untai baru yang komplementer dengan untai DNA cetakan. Konsentrasi optimal dNTPs untuk proses PCR harus ditentukan.

Konsentrasi yang biasanya digunakan untuk setiap dNTP adalah 200 μM. Pada konsentrasi ini, sangat penting bagi Anda untuk mengatur konsentrasi ke-empat dNTP pada titik estimasi Km yaitu untuk setiap dNTP 50mM, harus selalu diatur pH7,0. Konsentrasi yang tinggi akan menimbulkan ketidakseimbangan dengan enzim polimerase. Sedang pada konsentrasi rendah akan memberikan ketepatan dan spesifitas yang tinggi tanpa mereduksi hasil akhir. Total konsentrasi dNTP dan ion saling terkait dan tidak akan mengubah secara bebas.

d. DNA polimerase

Enzim polimerase DNA berfungsi sebagai katalisis untuk reaksi polimerisasi DNA. Pada proses PCR, enzim ini diperlukan untuk tahap ekstensi DNA. Enzim polimerase DNA yang digunakan untuk proses PCR diisolasi dari bakteri termofilik atau hipertermofilik oleh karena itu enzim ini bersifat termostabil sampai temperatur 95°C.

Pada awal perkembangannya, DNA polymerase yang digunakan dalam PCR adalah fragmen Klenow DNA polymerase 1 yang berasal dari Escherichia coli (Mullis dan Faloona, 1989 dalam Yuwono 2006). Fragmen Klenow adalah DNA polimerase yang telah dihilangkan aktivitas eksonuklease (5’→3’)-nya. Beberapa kelemahan fragmen Klenow antara lain bahwa enzim ini tidak tahan panas, laju polimerisasinya termasuk sedang, dan prosesivitasnya rendah.

Prosesivitas adalah kemampuan suatu enzim polimerase untuk menggabungkan nukleotida dengan suatu primer secara terus-menerus tanpa terdisosiasi dari komplek primer DNA cetakan. Hampir semua DNA polimerase mempunyai prosesivitas yang rendah sehingga akan terdisosiasi dari komplek primer-DNA cetakan setelah menggabungkan kurang dari 10 nukleotida. Salah satu perkecualian adalah T7 DNA polimerase yang mampu menggabungkan ribuan nukleotida tanpa terdisosiasi dari komplek primer-DNA cetakan (Struhl, 1990 dalam Yuwono 2006).

Aktivitas DNA polimerase bergantung dari jenisnya dan dari mana bakteri tersebut diisolasi. Ada beberapa jenis DNA polimerase yang digunakan dalam PCR. Anda diharapkan mengikuti sistematika penjelasan sub topik selangkah demi selangkah agar Anda memperoleh pemahaman yang utuh tentang konsep PCR. Berikut penjelasan tentang jenis-jenis DNA polymerase. Selamat menyimak!

1) Taq DNA polimerase

Salah satu tahapan PCR adalah denaturasi DNA cetakan dengan menggunakan suhu tinggi (95°C). Dengan demikian diperlukan suatu enzim DNA polimerase yang tetap aktif meskipun mengalami inkubasi pada suhu tinggi. Alternatif bagi fragmen Klenow yang kemudian digunakan dalam PCR adalah DNA polimerase yang berasal dari mikrobia termofilik, yaitu Taq DNA polimerase yang berasal dari bakteri Thermus aquaticus BM, spesies ini diisolasi dari taman Yellowstone pada tahun 1969. Thermus aquaticus BM merupakan suatu strain yang tidak mempunyai endonuklease restriksi Taq1. Taq DNA polimerase tersusun dari satu rantai
polipeptida dengan berat molekul sekitar 95 kD. Enzim ini bersifat termostabil dan mempunyai kemampuan polimerisasi DNA yang sangat tinggi, tetapi tidak mempunyai aktivitas eksonuklease 5’→3’. Enzim ini paling aktif pada pH 9 dan suhu aktivitas optimumnya sekitar 75°C- 80°C.

Kelebihan enzim Taq DNA polymerase adalah enzim ini tahan terhadap suhu tinggi yang diperlukan untuk memisahkan rantai DNA cetakan. Dengan kelebihan semacam ini, maka tidak diperlukan penambahan enzim pada setiap siklus PCR seperti yang harus dilakukan apabila enzim yang digunakan adalah fragmen Klenow DNA polimerase 1 (Gelfand dan White, 1990 dalam Yuwono, 2006). Kelebihan lain enzim Taq DNA polimerase adalah laju polimerisasi DNA yang tinggi serta prosesivitasnya yang juga lebih tinggi dibandingkan dengan fragmen Klenow. Taq DNA polymerase mempunyai suhu yang tinggi untuk sintesis DNA yaitu 75-80°C. Aktivitas spesifik enzim ini dalam menggabungkan nukleotida mencapai 150 nukleotida per detik per molekul enzim. Aktivitas polimerisasi DNA nya dari ujung-5’ ke ujung-3’ dan aktivitas enzimatik Taq DNA polimerase memiliki waktu paruh (half-life) pada suhu 95°C adalah 40 menit (Gelfand dan White, 1990 dalam Yuwono, 2006).

Deterjen non ionik Tween 20 (0,5-1%) dapat digunakan untuk meningkatkan efisiensi Taq DNA polymerase. Senyawa tambahan lain yang juga dapat meningkatkan efisiensi polimerisasi Taq DNA polimerase adalah DMSO (Dimetil sulfoksida), gelatin, gliserol dan ammonium sulfat. Enzim Taq DNA polimerase diketahui dapat menggunakan deoksiribonukleotida trifosfat yang sudah dimodifikasi sebagai substrat dan dapat digunakan untuk melabel fragmen DNA, misalnya dengan radionukleotida, digoxigenin, biotin atau fluorelsen (Anonim, 1995 dalam Yuwono, 2006). Taq DNA polimerase juga dapat digunakan untuk melakukan sekuensing DNA (DNA Sequencing).

Enzim Taq DNA polimerase memiliki kelebihan di antaranya berpotensi untuk melakukan kesalahan dalam menggabungkan nukleotida sehingga ada kemungkinan terjadi mutasi pada fragmen gen hasil amplifikasi. Meskipun demikian, dengan kondisi yang tepat, kesalahan penggabungan nukleotida semacam itu tidak terjadi seperti misalnya hasil amplifikasi fragmen gen HIV-1 (5400 nukleotida) dengan siklus amplifikasi 30 kali. Demikian juga halnya dengan hasil amplifikasi gen β-globin (14990 nukleotida).

ligasi, fragmen DNA tersebut harus dibuat pepat/ tumpul dengan menggunakan aktivitas polimerase 5’→3’ fragmen Klenow.

Aktivitas Taq DNA polimerase dipengaruhi oleh konsentrasi ion magnesium. Aktivitas Taq DNA polimerase mencapai maksimal pada konsentrasi MgCl₂ sebesar 2,0 mM, apabila konsentrasi dNTP yang digunakan adalah 0,7-0,8 mM. Konsentrasi Mg²⁺ lebih tinggi dari 2,0 mM akan menghambat aktivitas Taq DNA polimerase (Lawyer et al., 1989 dalam Yuwono, 2006). Di samping itu, aktivitas Taq DNA polimerase ini juga akan menurun 20-30% jika konsentrasi total dNTP yang digunakan mencapai 4-6 mM (Gelfand dan White, 1990 dalam Yuwono, 2006). Konsentrasi Taq DNA polimerase yang dianjurkan untuk melakukan PCR adalah antara 1-2 unit per 50-100 µL reaksi (Yuwono, 2006). Pada referensi lain dinyatakan biasanya untuk setiap 100µL volume reaksi ditambahkan 2,0-2,5 unit (Fatchiyah, dkk., 2011).

Untuk reaksi yang berbeda, enzim yang diperlukan mungkin berbeda. Oleh karena itu, sebaiknya dilakukan pengujian dengan melakukan variasi konsentrasi enzim kemudian dicek dengan elektroforesis pada gel agarose. Jika konsentrasi enzim terlalu tinggi, maka akan diperoleh produk non spesifik yang terlalu besar, sedangkan jika konsentrasinya terlalu rendah, maka produk yang diharapkan juga akan terlalu sedikit.

Penggunaan enzim ini harus memperhatikan proses penyimpanan (selalu di freezer pada suhu - 20°C), dan pada saat pengambilan, enzim tidak boleh terlalu lama di suhu ruang. Usahakan enzim selalu dalam kotak berisi water-ice (potongan es yang diberi air sedikit agar suhu tetap 4°C). Hal ini dilakukan untuk meminimalkan kerusakan enzim yang mungkin terjadi akibat pengaruh perubahan suhu.

Taq DNA polimerase yang digunakan dalam PCR adalah paten asli dari perusahaan Promega, walaupun pada saat ini sudah dikembangkan oleh perusahaan yang lain.

2) Tth DNA Polimerase

Enzim DNA polymerase lain yang juga dapat digunakan untuk melakukan PCR adalah Tth DNA Polimerase. Enzim ini diisolasi dari eubakteria thermostilik *Thermus thermophilus* HB8. Tth DNA Polimerase mempunyai prosesivitas tinggi dan tidak mempunyai aktivitas eksonuklease 3’→5’. Enzim ini menunjukkan aktivitas tertinggi pada pH 9 dan suhu aktivitas optimum sekitar 75°C. Selain aktivitas polimerase, enzim ini juga memiliki aktivitas transkriptase balik (reverse transcriptase) intrinsik yang sangat efisien dengan adanya ion mangan (Mn²⁺). Aktivitas transkriptase balik tersebut jauh lebih tinggi dibanding dengan aktivitas serupa yang dimiliki oleh DNA polimerase I yang ada pada Escherichia coli maupun pada Taq DNA Polimerase. Tth DNA Polimerase juga dapat menggunakan substrat yang dimodifikasi sehingga dapat digunakan untuk melabel fragmen DNA dengan radionukleotida, digoxigenin maupun biotin.

Seperti yang sudah dijelaskan sebelumnya bahwa enzim Tth DNA Polimerase mempunyai aktivitas transkriptase balik yang tinggi pada suhu tinggi. Oleh karena itu, enzim ini dapat digunakan untuk mengatasi masalah yang timbul akibat adanya
struktur sekunder pada molekul RNA. Dengan demikian, enzim ini dapat digunakan untuk melakukan Reverse Transcriptase PCR (RT-PCR). Molekul cDNA yang diperoleh dari hasil reaksi transkripsi balik (reverse transcription) dapat sekaligus diamplifikasi dengan menggunakan enzim Tth DNA Polimerase dengan adanya ion Mg²⁺. Enzim ini dapat digunakan untuk melakukan RT-PCR molekul RNA sampai ukuran 1000 pasangan basa (bp, basepairs).

3) **Pwo DNA Polimerase**

Enzim Pwo DNA polimerase diisolasi dari arcaebakteri hiperthermolibik *Pyrococcus woesei*. Enzim Pwo DNA polimerase mempunyai berat molekul sekitar 90 kD. Enzim ini mempunyai prosesivitas polimerisasi 5'→3' yang tinggi, mempunyai aktivitas eksonuklease 3'→5' dan tidak menunjukkan aktivitas eksonuklease 5'→3'.

Pwo DNA polimerase mempunyai stabilitas thermal yang lebih tinggi dibanding dengan Taq DNA polimerase. Waktu paruh enzim ini lebih dari 2 jam pada suhu 100°C, sedangkan Taq DNA Polimerase hanya mempunyai waktu paruh 5 menit pada suhu ini. Aktivitas eksonuklease 3'→5' (aktivitas proof-reading dalam proses sintesis DNA) yang dimiliki oleh Pwo DNA polimerase meningkatkan ketepatan (fidelity) proses sintesis DNA sepuluh kali lebih tinggi dibanding dengan ketepatan yang dimiliki Taq DNA polimerase. Jika Taq DNA polimerase digunakan untuk mengamplifikasi sekuen DNA sepanjang 200 pasangan basa sebanyak satu juta kali, maka kurang lebih 56% produk amplifikasinya yang mengandung kesalahan. Ketepatan proses polimerisasi DNA secara invitro merupakan salah satu parameter paling penting dalam melakukan PCR. Hal ini terutama sangat penting jika DNA atau RNA cetakan yang digunakan hanya berjumlah sangat sedikit.

Hasil amplifikasi menggunakan Pwo DNA Polimerase adalah molekul DNA dengan ujung tumpul/ pepat (blunt-end) sehingga dapat digunakan dalam proses ligasi ujung tumpul secara langsung tanpa harus dilakukan modifikasi terhadap ujung molekul DNA. Oleh karena sifat ketepatannya yang tinggi, maka enzim ini sangat berguna untuk beberapa aplikasi, di antaranya untuk kloning produk PCR, studi polimorfisme alel dalam transkrip RNA individual, karakterisasi mutasi yang jarang di dalam suatu jaringan, karakterisasi status alel suatu sel tunggal atau DNA molekul tunggal, karakterisasi populasi sel dalam suatu kultur.

Pwo DNA polimerase juga dapat menggunakan substrat nukleotida yang dimodifikasi, misalnya digoxigenin-dUTP, biotin-dUTP atau fluorescein-dUTP sehingga dapat digunakan juga untuk melabel DNA.

4) **Pfu dan Tli DNA polimerase**

DNA polimerase lain yang dapat digunakan dalam melakukan PCR adalah Pfu dan Tli DNA Polimerase. Pfu DNA polimerase diisolasi dari *Pyrococcus furiosus*, mempunyai berat molekul 92 kD, aktif pada suhu 74°C dan mempunyai aktivitas eksonuklease
Biologi Sel dan Molekuler

3′→5′. Enzim ini diketahui mempunyai laju kesalahan yang paling kecil dibandingkan dengan enzim DNA polymerase yang lain. Produksi amplifikasi dengan menggunakan enzim ini adalah molekul DNA dengan ujung tumpul.

Tli DNA polimerase diisolasi dari *Thermococcus litoralis*, sangat stabil terhadap panas, aktivitas optimum pada suhu 75°C dan tetap berfungsi meskipun diinkubasi pada suhu 100 °C. Berat molekul enzim ini 90 kD. Enzim ini juga mempunyai aktivitas eksonuklease 3′→5′.

Komponen PCR selanjutnya yang dapat mempengaruhi keberhasilan hasil PCR adalah PCR bufer dan konsentrasi Mg²⁺. Berikut penjelasannya.

e. PCR buffer dan konsentrasi Mg²⁺

Reaksi PCR hanya akan berlangsung pada kondisi pH tertentu. Oleh karena itu, untuk melakukan proses PCR diperlukan buffer PCR. Fungsi buffer di sini adalah untuk menjamin pH medium. Selain buffer PCR diperlukan juga adanya ion Mg²⁺, ion tersebut berasal dari MgCl₂. MgCl₂ bertindak sebagai kofaktor yang berfungsi menstimulasi aktivitas DNA polimerase. Dengan adanya MgCl₂ ini akan meningkatkan interaksi primer dengan templat/ cetakan yang membentuk komplek larut dengan dNTP (senyawa antara). Dalam proses PCR konsentrasi MgCl₂ berpengaruh pada spesifisitas dan perolehan proses. Umumnya buffer PCR sudah mengandung senyawa MgCl₂ yang diperlukan. Tetapi disarankan sebaiknya antara MgCl₂ dan buffer PCR dipisahkan supaya dapat dengan mudah dilakukan variasi konsentrasi MgCl₂ sesuai yang diperlukan.

Buffer standar untuk PCR tersusun atas 50mM KCl, 10mM Tris-Cl (pH8.3) dan 1,5mM MgCl₂. Buffer standard ini akan bekerja dengan baik untuk cetakan DNA dan primer dengan kondisi tertentu, tetapi mungkin tidak optimum dengan kombinasi yang lain. Produk PCR buffer ini terkadang dijual dalam bentuk tanpa atau dengan MgCl₂.

Konsentrasi ion magnesium dalam PCR buffer merupakan faktor yang sangat kritikal, karena kemungkinan dapat mempengaruhi proses annealing primer, temperatur disosiasi untai cetakan DNA, dan produk PCR. Hal ini disebabkan konsentrasi optimal ion Mg²⁺ itu sangat rendah. Hal ini penting untuk preparasi cetakan DNA yang tidak mengandung konsentrasi chelating agent yang tinggi, seperti EDTA atau fosfat. Ion Mg²⁺ yang bebas bila terlalu rendah atau tidak ada, maka biasanya tidak menghasilkan produk akhir PCR, sedang bila terlalu banyak ion Mg²⁺ yang bebas akan menghasilkan produk PCR yang tidak diinginkan. Penentuan kisaran konsentrasi ion Mg²⁺ dapat dilihat pada Gambar 8.x, pada setiap sumur bervariasi berjarak 0,5 mM.

f. PCR Thermal Cycler (Mesin PCR)

PCR Thermal Cycler merupakan suatu alat yang dipergunakan untuk mengamplifikasi atau menggandakan untaian basa-basa DNA yang dibatasi oleh pasangan primer pengapitnya melalui pengaturan suhu dan penggunaan enzim tahan panas tinggi. (Maftuchah, dkk., 2014).

PCR thermal cycler pertama kali dikembangkan oleh perusahaan PerkinElmer sebagai pemegang paten asli. Pada saat ini telah diproduksi berbagai macam tipe alat PCR thermal cycler ini dari berbagai perusahaan yang bergerak dalam bioteknologi. Walaupun
nama masing-masing alat itu berbeda tetapi prinsip kerjanya sama. Reaksi PCR biasanya tidak 100% efisien. Kondisi reaksi perlu divariasikan untuk memperbaiki efisiensi ini. Parameter yang biasa divariasikan meliputi suhu *annealing* dan konsentrasi magnesium (Bermingham dan Luettichw, 2003).

Anda dapat menyimak ilustrasi terkait di antara contoh instrument *PCR Thermal Cycler* pada gambar 8.9 berikut ini.

![Gambar 8.9 PCR Thermal Cycler](image)

Dari pembelajaran tentang komponen PCR, apakah pemahaman Anda sudah lebih jelas tentang tentang konsep tersebut? Selanjutnya pada topik berikut akan dijelaskan tentang jenis-jenis modifikasi PCR.
Latihan

1) Jelaskan:
 a. sejarah pengembangan teknik PCR!
 b. kelebihan teknik PCR secara umum sehingga banyak diterapkan di berbagai bidang

2) Jelaskan tentang pengertian PCR berdasarkan beberapa definisi yang sudah dijelaskan

3) Jelaskan tahapan dan tujuan masing-masing tahapan yang terjadi pada proses PCR

4) Jelaskan:
 a. komponen utama dan masing-masing fungsinya pada Proses PCR
 b. komponen selain utama beserta masing-masing fungsinya yang juga penting pada proses PCR

Petunjuk Jawaban Latihan

Untuk membantu Anda dalam mengerjakan soal latihan tersebut silakan pelajari kembali materi tentang:
1) Pengertian PCR
2) Prinsip Dasar PCR
3) Komponen PCR

Ringkasan

2. Berdasarkan pengertian PCR menurut beberapa referensi di atas intinya PCR merupakan suatu teknik atau metode atau cara perbanyakan (replikasi/amplifikasi) fragmen DNA secara enzimatik tanpa menggunakan organisme atau secara in vitro, yang melibatkan beberapa tahap yang berulang (siklus) dan pada setiap siklus terjadi duplikasi jumlah target DNA untai gandasampai jutaan kopi fragmen DNA.

3. Prinsip dasar PCR adalah proses siklus yang berulang meliputi denaturasi, annealing dan ekstensi oleh enzim DNA polimerase. Denaturasi merupakan proses untuk membuka ikatan untai ganda DNA (dsDNA) sehingga terjadi pemisahan untai ganda DNA menjadi untai tunggal DNA (ssDNA). Annealing merupakan proses penempelan
primer pada daerah tertentu dari target DNA. Ekstensi merupakan proses pemanjangan primer oleh enzim DNA polimerase.

4. Pada proses PCR diperlukan empat komponen utama yang terdiri dari: (1) DNA cetakan (template) yang merupakan fragmen DNA yang akan dilipatgandakan, (2) oligonukleotida primer spesifik yaitu suatu sekuen oligonukleotida pendek (15-25 basa nukleotida) yang digunakan untuk mengawali sintesis rantai DNA, (3) deoksiribonukleotida trifosfat (dNTP) terdiri atas dATP, dCTP, dGTP, dTTP dan (4) enzim DNA polimerase yaitu enzim yang melakukan katalisi reaksi sintesis rantai DNA yang thermostabil. Adapun komponen lain yang juga penting adalah senyawa buffer PCR, ion Mg$^{2+}$, dan thermal cycler (mesin PCR).

Tes 1

1) Amplifikasi rangkaian DNA target untuk memperoleh rangkaian tersebut dalam jumlah yang besar dapat dicapai dengan menggunakan:
 A. PCR
 B. b.FISH
 C. Norther blot
 D. Western blot

2) Kelebihan teknik PCR (Polymerase Chain Reaction), di antaranya spesifisitas, sensitivitas dan:
 A. validitas
 B. afinitas
 C. aviditas
 D. ketepatan (fidelitas)

3) Prinsip dasar PCR adalah proses siklus yang berulang meliputi tahapan:
 A. annealing, denaturasi dan ekstensi
 B. denaturasi, annealing dan ekstensi
 C. ekstensi, denaturasi dan annealing
 D. denaturasi, ekstensi dan annealing

4) Komponen utama pada proses PCR adalah sebagai berikut, kecuali....
 A. DNA template
 B. dNTP
 C. deion
 D. DNA polimerase
5) Di antara komponen utama dalam melakukan pemeriksaan PCR yang berfungsi sebagai pembatas fragmen DNA target yang akan diamplifikasi dan sekaligus menyediakan gugus hidroksi (-OH) pada ujung 3’ yang diperlukan untuk proses eksistensi DNA adalah:
A. dNTPs
B. cetakan DNA
C. primer oligonukleotida
D. enzim Taq DNA polymerase

6) Tahapan PCR dimana primer menempel pada sekuen komplementernya pada DNA target disebut....
A. denaturasi
B. annealing
C. elongasi
D. isolasi

7) Enzim yang berfungsi mengkatalisis reaksi sintesis rantai DNA adalah....
A. restriksi
B. DNA polimerase
C. DNase
D. ligase

8) Kemampuan suatu enzim polimerase untuk menggabungkan nukleotida dengan suatu primer secara terus-menerus tanpa terdisosiasi dari komplek primer DNA cetakan disebut....
A. prosesivitas
B. sensitivitas
C. spesifisitas
D. afinitas

9) Komponen lain yang juga penting dalam proses PCR adalah ion Mg$^{2+}$, yang berasal dari MgCl$_2$. Fungsi MgCl$_2$ dalam proses PCR ialah....
A. menyediakan gugus hidroksi (-OH) pada ujung 3’ yang diperlukan untuk proses eksistensi DNA
B. sebagai cetakan untuk pembentukan molekul DNA baru yang sama
C. sebagai building block DNA yang diperlukan dalam proses ekstensi DNA
D. bertindak sebagai kofaktor yang berfungsi menstimulasi aktivitas DNA polymerase

10) Pengenalan (annealing) suatu primer terhadap DNA target tergantung pada faktor berikut ini, kecuali....
A. panjang untai
B. banyaknya kandungan GC
C. konsentrasi dNTP
D. konsentrasi primer

Cocokkanlah jawaban Anda dengan Kunci Jawaban Tes 1 yang terdapat di bagian akhir Bab 8 ini. Hitunglah jawaban yang benar. Kemudian, gunakan rumus berikut untuk mengetahui tingkat penguasaan Anda terhadap materi Bab 1.

\[
\text{Tingkat penguasaan} = \frac{\text{Jumlah Jawaban yang Benar}}{\text{Jumlah Soal}} \times 100\%
\]

Arti tingkat penguasaan:
- 90 - 100% = baik sekali
- 80 - 89% = baik
- 70 - 79% = cukup
- < 70% = kurang

Apabila mencapai tingkat penguasaan 80% atau lebih, Anda dapat meneruskan mempelajari Topik 2. **Bagus!** Jika masih di bawah 80%, Anda harus mengulangi materi Topik 1, terutama bagian yang belum dikuasai.
Topik 2
Pengembangan Teknik *Polymerase Chain Reaction* (PCR)

Setelah Anda mempelajari konsep PCR pada Topik 1, selanjutnya Anda akan lebih mudah mempelajari dan mencermati materi yang ada pada Topik 2 yaitu tentang Pengembangan Teknik PCR. Pada topik ini akan dibahas dua sup tokip utama yaitu tentang jenis-jenis PCR dan faktor yang mempengaruhi keberhasilan PCR.

Selain itu, sekarang juga sudah dikembangkan teknik PCR yang tidak memerlukan langkah isolasi molekul DNA terlebih dahulu sebelum diamplifikasi. Dalam hal ini PCR dapat dilakukan dengan menggunakan sel atau jaringan sebagai bahan awal tanpa harus melakukan isolasi DNA secara khusus. Dengan teknik ini, PCR dapat dilakukan di dalam sel atau jaringan tersebut sehingga teknik ini dikenal sebagai PCR in Situ. Selain itu, teknik PCR sekarang juga dapat dilakukan secara efisien untuk amplifikasi molekul DNA yang panjang.

Metode PCR saat ini sudah cukup canggih, namun PCR masih dapat dimodifikasi sehingga memberikan hasil yang lebih baik lagi. Nah, saudara mahasiswa berikut ini Anda akan mempelajari tentang Jenis-jenis teknik PCR dan faktor-faktor yang menentukan keberhasilan PCR. Seorang ATLM sangat penting mempelajari topik ini agar dapat membandingkan jenis-jenis teknik PCR sehingga mampu menerapkan teknik ini sesuai tujuan pemeriksaan atau penelitian yang dilakukan. Mari kita simak bersama topik berikut ini

A. **JENIS-JENIS TEKNIK PCR**

Kemajuan ilmu pengetahuan dan teknologi biologi sel dan molekuler yang cukup pesat, menimbulkan pengaruh terhadap pengembangan teknologi analisis biomolekuler termasuk pergembangan PCR. Pada sub topik ini Anda akan mempelajari dan mencermati tentang jenis-jenis teknik PCR. Silakan Anda simak penjelasannya berikut ini.
1. **PCR Konvensional**

PCR konvensional adalah PCR di mana tahap perbanyakan materi genetik dan tahap deteksi produk PCR dilakukan secara berturut-turut, yaitu tahap deteksi dilakukan bila tahap perbanyakan materi genetik telah selesai. Reaksi PCR konvensional biasanya menggunakan satu pasang primer oligonukleotida untuk mengamplifikasi bagian tertentu dari genom agen infeksi serta dilakukan pada suatu tabung. Primer PCR adalah oligodeoksiribonukleotida pendek, atau oligomer yang dirancang untuk melengkapi urutan akhir sekuen dari amplikon target PCR dan digunakan untuk mengawali sintesis rantai DNA. (Dyah Ayu dan Dharmayanti, 2014).

Tahap deteksi dapat dilakukan dengan beberapa cara (format), salah satunya menggunakan elektroforesis gel kemudian dilanjutkan dengan hibridisasi pada membran menggunakan reagen pelacak atau hibridisasi dalam tabung reaksi. Jika yang diekstraksi adalah materi genetik berupa DNA maka DNA dapat langsung diperbanyak. Namun jika yang diisolasi berupa RNA, maka diperlukan tahap tambahan untuk mengubah RNA menjadi DNA yaitu tahap transkripsi balik.

2. **Real Time PCR (Q-PCR)**

Real Time PCR adalah suatu metode analisa yang dikembangkan dari reaksi PCR. Real time ini juga dikenal sebagai *quantitative real time polymerase chain reaction* atau Q-PCR. Teknik ini dapat digunakan untuk mengamplifikasi sekaligus menghitung jumlah target molekul DNA hasil amplifikasi tersebut. Maksud dari kata *real time* pada metode ini adalah data fluoresensi yang dihasilkan dari proses amplifikasi dapat diamati secara langsung pada saat proses amplifikasi masih berjalan dan tanpa harus menunggu seluruh siklus amplifikasi selesai.

Pada analisa PCR konvensional, deteksi keberadaan DNA dilakukan pada akhir reaksi dan pengamatan masih harus dilakukan dengan elektroforesis. Dengan analisa Real Time PCR memungkinkan untuk dilakukan pengamatan pada saat reaksi berlangsung. Pada Real Time PCR pengamatan hasil tidak lagi membutuhkan tahap elektroforesis, sehingga tidak lagi dibutuhkan gel agarose dan penggunaan *Ethydium Bromide (EtBr)* yang merupakan senyawa karsinogenik. Cara kerja dari *Real Time* mengikuti prinsip umum reaksi PCR, utamanya adalah DNA yang telah diamplifikasi dihitung setelah diakumulasi dalam reaksi secara real time sesudah setiap siklus amplifikasi selesai. Alur pemeriksaan *Real Time PCR* disajikan pada Gambar 8.11.
Gambar 8.11 Alur Pemeriksaan *Real Time* PCR: Ekstraksi DNA, Amplifikasi dan Deteksi (Applied Biosystem).

Real Time PCR merupakan pengembangan metode PCR yang hasil amplifikasinya dianalisis selama proses amplifikasi dengan menggunakan pewarna DNA atau pelacak berfluoresensi. Analisis data dilakukan dalam instrumen yang sama, tanpa pemindahan sampel, tanpa penambahan sampel dan tanpa pemisahan dengan elektroforesis. Metode ini dapat digunakan untuk analisis secara kuantitatif jumlah awal sehingga dapat digunakan pengukuran secara kuantitatif (Sudjadi, 2008).

Terdapat beberapa jenis format deteksi pada metode *Real Time PCR* di antaranya:

a. **SYBR® GreenI**

Dalam *real-time* PCR, diperlukan pewarna DNA yang berfluoresensi. Sebagian besar digunakan fluoresen (*SYBR® Green dye-based assays*) atau deteksi hidrolisis probe based solution (Taqman® atau PerfectProbe). Proses *SYBR Green Fluorescent DNA Binding Dye* yaitu SYBR. Senyawa ini berikatan dengan DNA untai ganda dan menyebabkan fluoresensi, tetapi senyawa ini tidak berikatan dengan DNA untai tunggal. Intensitas fluoresensi tergantung pada jumlah DNA untai ganda hasil amplifikasi. Senyawa SYBR® Green I merupakan pelacak yang berikatan dengan semua jenis DNA untai ganda (tidak spesifik) tetapi tidak berikatan dengan DNA untai tunggal. Pelacak SYBR® Green I memberikan fluoresensi dengan intensitas yang cukup tinggi (lebih dari 1000 kali lipat) saat berinterkalasi dengan DNA untai ganda (Pestana dkk., 2010).

Gambar 8.11 Mekanisme SYBR® Green I Secara Sederhana (Xu, 2011)

Gambar 8.12 Mekanisme SYBR® Green I Secara Lengkap (Lappin dkk., 2012., Applied Biosystem)
b. Hidrolisis pelacak

Gambar 8.14 A dan B. Mekanisme Hidrolisis Pelacak Pada Pemeriksaan Real Time PCR (Applied Biosystem)
Gambar 8.15 Data hasil PCR real-time TaqMan untuk mendeteksi gen toksin Shiga dalam DNA yang diambil dari kultur *E. coli*. Garis 1-6 - Kurva amplifikasi kontrol internal; garis 7 - menunjukkan non-amplifikasi untuk kontrol negatif dan dua sampel (Hernandez dan Rodriguez, 2012)

Setelah mempelajari Metode *Real Time* PCR, terdapat beberapa perbedaan metode tersebut dengan metode PCR konvensional atau PCR standar yang akan disajikan pada Tabel 8.3 berikut ini.

<table>
<thead>
<tr>
<th>Tabel 8.3 Perbedaan PCR Konvensional/ standar dengan Real Time PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR Konvensional</td>
</tr>
<tr>
<td>Sensitivitas lebih rendah</td>
</tr>
<tr>
<td>Presisi lebih rendah</td>
</tr>
<tr>
<td>Tidak otomatis</td>
</tr>
<tr>
<td>Hasil tidak dalam bentuk angka</td>
</tr>
<tr>
<td>Ada tahapan setelah PCR</td>
</tr>
<tr>
<td>Deteksi keberadaan DNA dilakukan pada akhir reaksi</td>
</tr>
<tr>
<td>Pengamatan keberadaan DNA hasil amplifikasi dilakukan di gel agarosa setelah dilakukan elektroforesis</td>
</tr>
</tbody>
</table>
3. **Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR)**

Reverse transcriptase-PCR (RT-PCR) merupakan metode yang digunakan untuk mengamplifikasi cDNA dari mRNA atau Bisa juga langsung dari mikroorganisme yang memiliki materi genetik RNA (seperti virus (polio,campak, rubella, influenza dll). RT-PCR digunakan untuk mendapatkan kembali dan menyalin utas 5’ dan 3’ dari mRNA, menghasilkan kumpulan cDNA yang banyak dari jumlah mRNA yang sangat sedikit. RT-PCR dapat dengan mudah digunakan untuk mengidentifikasi mutasi, polimorfisme dan mengukur kekuatan ekspresi gen.

Konsep utama yang digarisbawahi pada teknik ini yaitu mengkonversi mRNA ke bentuk rantai tunggal untuk cetakan cDNA. Primer Oligodeoksinukleotida di hibridisasikan sehingga cDNA dapat teramplifikasi. Tergantung pada tujuan penelitian, primer untuk sintesis cDNA rantai pertama dapat disusun secara khusus untuk hibridisasi gen target atau dapat mengikat secara umum semua mRNA.

Teknik RT-PCR memerlukan enzim transcriptase balik (reverse transcriptase). Enzim transcriptase balik adalah enzim DNA polimerase yang menggunakan molekul RNA sebagai cetakan untuk mensintesis molekul DNA (cDNA) yang komplementer dengan molekul RNA tersebut. Beberapa enzim transcriptase balik yang dapat digunakan antara lain mesofilik viral reverse transcriptase (RT-ase) yang dikode oleh virus Avian myoblastosis (AMV) maupun oleh virus Moloney murine leukemia (M-MuLV), dan Tth DNA polymerase. RT-ase yang dikode oleh AMV maupun M-MuLV mampu mensintesis cDNA sampai sepanjang 10 kb, sedangkan Tth DNA polimerase mampu mensintesis cDNA sampai sepanjang 1 – 2 kb.

Berbeda dengan Tth DNA polimerase, enzim RTase AMV dan M-MuLV mempunyai aktivitas RNase H yang akan menyebabkan terjadinya degradasi RNA dalam hibrid RNA: cDNA. Aktivitas degradasi semacam ini akan berkurang jika berkompetisi dengan proses sintesis DNA selama proses produksi untai pertama cDNA. Enzim RTase yang berasal dari M-MuLV mempunyai aktivitas RNase H yang lebih rendah dibanding dengan yang berasal dari AMV.

Enzim M-MuLV mencapai aktivitas maksimum pada suhu 37°C sedangkan enzim AMV pada suhu 42°C dan Tth DNA polimerase mencapai aktivitas maksimum pada suhu 60 - 70°C. Penggunaan enzim M-MuLV kurang menguntungkan jika RNA yang digunakan sebagai cetakan mempunyai struktur sekunder yang ekstensif. Di lain pihak, penggunaan Tth DNA polimerase kurang menguntungkan jika ditinjau dari kebutuhan enzim ini terhadap ion Mn karena ion Mn dapat mempengaruhi ketepatan (fidelity) sintesis DNA. Meskipun demikian, enzim Tth DNA polimerase mempunyai keunggulan karena dapat digunakan untuk reaksi transkripsi balik sekaligus proses PCR dalam satu langkah reaksi.

Reaksi transkripsi balik dapat dilakukan dengan menggunakan beberapa macam primer yaitu:

a. Oligo (dT) sepanjang 12-18 nukleotida yang akan melekat pada ekor poli (A) pada ujung 3’ mRNA mamalia. Primer semacam ini pada umumnya akan menghasilkan cDNA yang lengkap.
b. Heksanukleotida acak yang akan melekat pada cetakan mRNA yang komplementer pada bagian manapun. Primer semacam ini akan menghasilkan cDNA yang tidak lengkap (parsial).

c. Urutan nukleotida spesifik yang dapat digunakan secara selektif untuk menyalin mRNA tertentu. (Yuwono, T., 2006).

4. **Nested PCR**

Nested PCR adalah suatu teknik perbanyakan (replikasi) sampel DNA menggunakan bantuan enzim DNA polimerase yang menggunakan dua pasang primer untuk mengamplifikasi fragmen. Dengan menggunakan *Nested PCR*, jika ada fragmen yang salah diamplifikasi, maka kemungkinan bagian tersebut diamplifikasi untuk kedua kalinya oleh primer yang kedua.

Waktu yang diperlukan dalam reaksi *Nested PCR* lebih lama dari pada PCR biasa karena pada *Nested PCR* dilakukan 2 kali reaksi PCR sedangkan pada PCR biasa hanya 1 kali reaksi PCR. Selain itu, keuntungan *Nested PCR* adalah meminimalkan kesalahan amplifikasi gandengan menggunakan 2 pasang primer. Mekanisme kerja dari *Nested PCR* sendiri yakni pada Fase denaturasi, pertama-tama DNA mengalami denaturasi lalu memasuki fase penempelan. Fase penempelan, sepasang primer pertama melekat di kedua utas tunggal DNA dan menamplifikasi DNA di antara kedua primer tersebut dan terbentuklah produk PCR pertama.

5. **Multiplex-PCR**

Multiplex PCR merupakan beberapa set primer dalam campuran PCR tunggal untuk menghasilkan amplikon (hasil amplifikasi PCR) dari berbagai ukuran yang spesifik untuk sekuens DNA yang berbeda. Dengan penargetan gen sekaligus, informasi tambahan dapat diperoleh dari running-tes tunggal yang tidak membutuhkan beberapa kali reagen dan lebih banyak waktu untuk melakukan. Temperatur annealing untuk masing-masing set primer harus dioptimalkan untuk bekerja dengan benar dalam reaksi tunggal, dan ukuran

Gambar 8.19 Hasil PCR Multiplex dari 7 set primer untuk gen target dari *Escherichia coli* terdiri dari: gen LT1, ST1, SLT1, SLT2, VT1, VT2 dan VTE.
6. PCR-ELISA

PCR-ELISA merupakan metode yang digunakan untuk menangkap asam nukleat yang meniru prinsip dari Enzyme Linked Immunosorbant Assay (ELISA) yang terkait. Di dalam suatu pengujian hibridisasi hasil produk dari PCR akan terdeteksi dengan metode ini. Dengan metode ini dapat dilakukan pengukuran sekuen internal pada produk PCR. Metode ini lebih dipilih karena lebih murah dibandingkan metode Real Time PCR.

PCR-ELISA telah digunakan sejak akhir 1980-an dan telah berkembang untuk mendeteksi sekuen tertentu dalam produk PCR. Meskipun banyak metode yang tersedia untuk mendeteksi sequen tersebut, ELISA PCR berguna untuk mendeteksi dan membedakan antara beberapa sasaran dari sekuen yang diinginkan. ELISA PCR ini juga berguna untuk skrining beberapa sampel, terutama bila jumlah sampel tidak menjamin.

Salah satu aspek yang paling berguna dari PCR-ELISA adalah kemampuannya dalam membedakan antara produk reaksi perubahan polimerase yang dihasilkan dari seperangkat primer yang mengandung variasi sekuen, yaitu sekuen yang bervariasi antar primer. Marilah kita simak ilustrasi contoh hasil pemeriksaan menggunakan metode ELISA PCR pada Gambar 8.21.
7. Touchdown PCR

Sebuah modifikasi dari PCR yang mencegah amplifikasi sekuen nonspesifik dengan memvariasikan suhu annealing. Sebuah varian dari PCR yang bertujuan untuk mengurangi latar belakang spesifik secara bertahap menurunkan suhu annealing selama PCR berlangsung. Suhu annealing pada awal siklus biasanya beberapa derajat (3-5 °C) di atas Tm primer yang digunakan, sedangkan pada siklus kemudian, dilanjutkan dengan beberapa derajat (3-5°C) di bawah Tm primer. Suhu tinggi memberikan spesifisitas yang lebih besar untuk primer mengikat, dan suhu yang lebih rendah memungkinkan amplifikasi lebih efisien dari produk tertentu yang terbentuk selama siklus awal.

Masih banyak jenis modifikasi dari PCR ini, seperti: Allele-specific PCR, Assembly PCR, Assymetric PCR, Dial-out PCR dan Hot start PCR, dan jenis PCR lainnya. Anda dapat mempelajari lebih banyak lagi tentang jenis-jenis PCR dan dipersilahkan untuk mengeksplor subtopik tersebut sesuai dengan kebutuhan masing-masing.

Sampai di sini, Apakah saudara sudah memahami tentang PCR? Apakah Anda dapat mengidentifikasi masing-masing karakteristik jenis-jenis PCR?

Setelah Anda memastikan dapat memahami topik yang sudah dipelajari, Anda akan melanjutkan pembahasan pada sub topik berikutnya yaitu faktor-faktor yang perlu diperhatikan untuk menentukan keberhasilan teknik PCR. Berikut penjelasannya.

B. FAKTOR-FAKTOR YANG MEMPENGARUHI KEBERHASILAN PCR

Keberhasilan PCR sangat ditentukan oleh beberapa faktor, di antaranya: (1) deoksiribonukleotida triphosphat (dNTP), (2) oligonukleotida primer, (3) cetakan DNA, (4) komposisi larutan buffer, (5) Jumlah siklus reaksi, (6) enzim yang digunakan dan (7) faktor teknis dan non teknis lainnya, misalnya kontaminasi. Keunggulan PCR adalah kemampuannya dalam melipatgandakan suatu fragmen DNA sehingga dapat mencapai 10^9 kali lipat. Dengan demikian, kontaminasi fragmen DNA dalam jumlah sangat sedikit sekalipun dapat menyebabkan terjadinya kesalahan yaitu dengan didapatkannya produk...
amplifikasi yang tidak diinginkan. Kontaminasi tersebut dapat berasal dari beberapa sumber, antara lain dari reaksi-reaksi PCR yang dilakukan sebelumnya. Oleh karena itu dalam melakukan PCR perlu diperhatikan beberapa hal sebagai berikut. (Yuwono, 2006).

1. **Deoksiribonukleotida triphosphat (dNTP)**

 Larutan stok dNTP yang akan digunakan dalam PCR sebaiknya dinetralkan menjadi pH 7,0. Untuk menentukan konsentrasinya sebaiknya digunakan spektroskopi. Larutan tersebut kemudian perlu dituang dalam volume kecil (aliquot) dengan konsentrasi 1 mM dan disimpan pada suhu -20ºC. Konsentrasi masing-masing dNTP yang diperlukan dalam PCR berkisar antara 20-200 µM dan keempat dNTP yang digunakan sebaiknya mempunyai konsentrasi yang sama untuk memperkecil kemungkinan kesalahan penggabungan nukleotida selama proses polimerisasi. Sebagai patokan, konsentrasi masing-masing dNTP sebesar 20 µM dalam 100µL secara teoritis cukup untuk mensintesis 2,6 µg atau 10 pmol DNA yang mempunyai panjang 400 bp (Gelfand dan White, 1990 dalam Yuwono, 2006).

2. **Oligonukleotida Primer**

 Konsentrasi primer yang optimal berkisar antara 0,1-0,5 µM (Gelfand dan White, 1990 dalam Yuwono, 2006), meskipun konsentrasi primer sampai 1,0 µM masih dapat menghasilkan produk yang sangat spesifik (Yuwono, 1991). Konsentrasi primer yang lebih tinggi dari 1 µM dapat menyebabkan terakumulasinya hasil polimerisasi yang non spesifik.

 Panjang oligonukleotida yang digunakan sebagai primer umumnya 18-28 nukleotida dan mempunyai kandungan G + C sebesar 50-60%. Sekuen oligonukleotida primer sebaiknya dicek apakah mempunyai kemungkinan membentuk hibrid antara primer yang satu dengan primer yang lainnya. Di samping itu, jika memungkinkan sebaiknya dihindari pula rancangan (design) primer yang mempunyai nukleotida C atau G secara berurutan tiga atau lebih pada ujung 3' karena hal ini dapat menyebabkan kesalahan peng-awal-an (mispriming) terutama pada daerah-daerah yang kaya akan sekuen G + C (Gelfand dan White, 1990 dalam Yuwono, 2006).

 Primer-primer yang digunakan (primer sense dan primer antisense) sebaiknya mempunyai nilai Tm (melting temperature) yang serupa. Tm adalah suhu pada saat setengah dari molekul DNA mengalami denaturasi. Nilai Tm oligonukleotida dapat dihitung dengan menggunakan formula \(Tm = 2^oC \times (A+T) + 4^oC \times (G + C) \).

 Urutan oligonukleotida primer dapat berupa urutan yang dapat dihibridisasi secara spesifik dengan suatu molekul cetakan DNA atau dapat bersifat “universal”. Primer universal adalah suatu primer yang komplementer dengan suatu sekuen nukleotida yang umum terdapat dalam banyak molekul DNA sehingga dapat berhibridisasi dengan bermacam-macam cetakan DNA. Sebagai contoh, gen yang mengkode RNA ribosom pada bakteri mengandung suatu urutan nukleotida yang terdapat pada semua banteri. Dengan demikian gen universal dapat dirancang sehingga dapat bersifat komplementer dengan sekuen tersebut. Di dalam sel hewan terdapat urutan nukleotida yang dikenal sebagai gen alu. Pada genom manusia terdapat sekitar 900.000 gen alu. Gen alu tersebut dapat
digunakan untuk merancang primer universal yang dapat diterapkan untuk bermacam-macam sel.

3. **Cetakan DNA**

Cetakan DNA yang digunakan sebaiknya berkisar antara 10^5-10^6 molekul. Cara perhitungan untuk menentukan banyaknya molekul cetakan DNA dapat dilihat pada Lampiran. Cetakan DNA yang digunakan dapat berupa DNA yang sudah dimurnikan dengan sentrifugasi gradient CsCl maupun dengan menggunakan sel yang dicampur dengan komponen PCR yang lain. Pada waktu suhu inkubasi PCR mencapai 95°C, yang dimaksudkan untuk mendenaturasi DNA, sudah cukup untuk merusak sel yang memungkinkan oligonukleotida primer menempel pada cetakan DNA yang ada di dalam sel. DNA yang digunakan sebagai cetakan dapat berupa rantai tunggal maupun rantai ganda. Efisiensi amplifikasi biasanya lebih tinggi jika menggunakan DNA yang sudah dilinierkan dengan suatu enzim restrikssi tertentu daripada kalau menggunakan molekul DNA dalam bentuk sirkular (Sambrook et al., 1989).

4. **Larutan Bufer**

Bufer yang dianjurkan untuk melakukan PCR adalah 10-50 mM Tris-HCl, pH 8,3-8,8 (pada suhu 20°C). Untuk membantu proses penempelan primer (primer *annealing*), dapat juga ditambahkan KCl sampai konsentrasi 50 mM. Di atas konsentrasi ini, KCl justru akan menghambat aktivitas *Taq DNA polymerase*. Di samping itu, perlu juga ditambahkan 1,5 mM MgCl2. Komponen lain yang perlu ditambahkan adalah gelatin atau BSA (*Bovine serum albumin*) sebanyak 0,1% (berat/volume) dan deterjen non ionic seperti misalnya Tween 20 sebanyak 0,05-0,1% untuk mempertahankan kestabilan enzim Taq DNA polimerase.

5. **Siklus Reaksi**

Pada umumnya PCR dilakukan dengan mengulangi siklus reaksi pelipatgandaan sebanyak 20-30 siklus. Akan tetapi, banyaknya siklus yang diperlukan tergantung terutama pada konsentrasi asal molekul DNA target yang akan dilipatgandakan. Siklus yang terlalu banyak justru akan meningkatkan konsentrasi produk yang tidak spesifik, sedangkan siklus yang terlalu sedikit akan mengurangi kuantitas produk yang diharapkan. Tabel 8.4 dapat digunakan sebagai patokan untuk menentukan banyaknya siklus yang diperlukan. Seperti yang sudah dibahas sebelumnya, siklus PCR dapat dilakukan dengan menggunakan beberapa water bath yang masing-masing diatur suhunya, atau dengan menggunakan *thermocycler* otomatis.

Pada akhir siklus biasanya dilakukan inkubasi tambahan pada suhu pemanjangan primer (biasanya 72°C jika digunakan Taq DNA polymerase) selama 5-15 menit untuk menyempurnakan proses polimerisasi.
Tabel 8.4 Patokan jumlah molekul target dengan banyaknya siklus yang diperlukan

<table>
<thead>
<tr>
<th>Molekul target</th>
<th>Siklus</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3,0 \times 10^5$</td>
<td>25-30</td>
</tr>
<tr>
<td>$1,5 \times 10^4$</td>
<td>30-35</td>
</tr>
<tr>
<td>$1,0 \times 10^3$</td>
<td>35-40</td>
</tr>
</tbody>
</table>

6. **Enzim yang digunakan**

Dalam topik sebelumnya telah dibahas beberapa enzim yang dapat digunakan untuk melakukan PCR. Secara umum semua konsentrasi enzim yang dianjurkan untuk melakukan PCR adalah 2,5 unit/reaksi. Seringkali penggunaan 1 unit enzim *Taq DNA polymerase* sudah optimum untuk melakukan PCR dengan jumlah siklus reaksi 20-25 kali. Untuk siklus yang lebih banyak, maka sebaiknya digunakan unit yang lebih besar pula, tetapi sebaiknya tidak melebihi 2,5 unit karena konsentrasi enzim yang terlalu tinggi akan menurunkan spesifisitasnya.

Faktor-faktor lain yang perlu diperhatikan dalam melakukan PCR akan dibahas pada bagian berikut ini. Silakan Anda simak penjelasan berikut ini

7. **Pemisahan ruangan pada proses PCR**

Jika memungkinkan, sebaiknya tempat untuk melakukan PCR dipisahkan dari tempat untuk melakukan manipulasi genetik yang lain. Pekerjaan manipulasi genetik, misalnya ligasi dan analisis restriksi, merupakan sumber kontaminasi yang paling potensial karena akan melibatkan fragmen-fragmen DNA. Jika fragmen-fragmen DNA tersebut mengkontaminasi tabung yang digunakan untuk melakukan PCR misalnya, maka hal ini dapat menghasilkan hasil positif palsu (false positif). Untuk menghindari hal ini sebaiknya PCR dilakukan di dalam ruangan khusus. Contoh laboratorium PCR yang memenuhi persyaratan minimal mari kita simak bersama pada Gambar 8.22.

Berdasarkan Gambar 8.22, untuk melakukan PCR diperlukan tiga area khusus di laboratorium yaitu:

a. **Ruang preparasi Reagen**

Ruang ini dikhususkan untuk pencampuran bahan-bahan untuk melakukan reaksi PCR yaitu master mix, Primer dan kontrol. Master mix dan kontrol dimasukkan ke dalam tabung PCR. Pada umumnya bahan-bahan yang digunakan disimpan dalam temperatur beku dan dicampur dalam suhu dingin, oleh karena itu ruangan ini harus dilengkapi refrigerator. Hal yang penting adalah bahan yang dipakai dibutuhkan dalam volume dan molaritas yang relatif sangat kecil sehingga ketepatan dalam pencampuran sangat menentukan hasil PCR. Peralatan yang ditempatkan di ruangan ini, meliputi: Mikropipet khusus (ada penghambat aerosol), tips, tabung, penutup tabung, rak tabung, Jas laboratorium dan sarung tangan.
b. Ruang preparasi spesimen

c. Ruang PCR dan Deteksi

Gambar 8.22 Layout Persyaratan Minimal Laboratorium PCR (Viljoe, 2005)

8. Penyimpanan Reagensia

Reagensia atau bahan kimia yang digunakan untuk PCR sebaiknya disiapkan tersendiri dan dituang di dalam tabung-tabung khusus. Volume reagensia yang disimpan dalam tabung-tabung tersebut diusahakan tidak terlalu besar sehingga kalau dibuang karena adanya kontaminasi tidak akan terlalu merugikan. Sebaiknya tabung-tabung yang berisi reagensia untuk PCR diberi nomor dan nomor tersebut dicatat pada waktu...
melakukan PCR. Dengan demikian apabila terjadi kontaminasi, maka akan mudah menelusuri kembali sumber kontaminasinya. Oligonukleotida yang digunakan untuk PCR sebaiknya disintesis di dalam tabung-tabung yang bebas dari fragmen-fragmen DNA yang lain.

9. Pipet

Pipet dan tip yang digunakan untuk mengambil reagensia adalah merupakan sumber kontaminasi yang rawan. Oleh karena itu, sebaiknya digunakan *positive displacement pipettes* yaitu suatu pipet yang menggunakan tip khusus. Tip khusus tersebut mempunyai *plunger* di dalamnya yang digunakan sebagai penekan cairan yang akan dimasukkan ke dalam tabung dan sekaligus memisahkan cairan reagensia dari pipet mikro penyedotna sendiri sehingga tidak ada kemungkinan cairan reagensia tersebut masuk ke dalam pipet mikro penyedotnya.

Perlu diketahui bahwa pipet mikro penyedot yang digunakan dalam manipulasi genetika sering terkontaminasi fragmen-fragmen DNA terutama bagian dinding sebelah dalamnya. Jika tip yang digunakan dalam PCR adalah tip biasa, maka ada kemungkinan fragmen DNA kontaminan tersebut dapat tercampur dengan reagensia PCR pada waktu pemipetan sampel reagensia.

Hal yang paling penting adalah jangan sekali-kali menggunakan lagi tip yang sudah pernah digunakan sebelumnya, baik untuk PCR maupun untuk manipulasi genetik yang lain, meskipun tip tersebut sudah dicuci. Jika tidak ada *positive displacement pipettes*, maka usahakan untuk menggunakan pipet mikro yang hanya digunakan untuk melakukan PCR. Untuk lebih memperkecil kemungkinan kontaminasi, cucilah bagian dalam dan ujung pipet tersebut dengan menggunakan air steril setiap kali selesai digunakan untuk melakukan PCR. (Yuwono, 2006).

10. Kecermatan dalam Teknik Laboratorium

Di samping hal-hal tersebut di atas, faktor lain yang perlu diperhatikan dalam melakukan PCR adalah kecermatan atau ketelitian terutama dalam hal penanganan sampel. Beberapa hal yang perlu diperhatikan antara lain:

a. Usahakan selalu memakai sarung tangan dan gantilah sarung tangan tersebut kalau sudah terkotori oleh komponen atau reagensia yang digunakan dalam PCR maupun kotoran lain. Hal ini dimaksudkan untuk memperkecil kemungkinan kontaminasi silang antar sampel.

b. Usahakan untuk membuka maupun menutup tabung reagensia dengan hati-hati sehingga tidak ada cipratan komponen reaksi, baik pada tangan maupun peralatan yang lain.
11. **Penggunaan Kontrol**

Untuk mengecek ada tidaknya kontaminan di dalam komponen reaksi yang digunakan, sebaiknya manfaatkanlah kontrol. Caranya adalah dengan mencampurkan komponen-komponen reaksi seperti biasa, tetapi tidak ditambahkan DNA cetakan, kemudian dilakukan inkubasi seperti biasa. Selain itu, dapat juga digunakan kontrol yang lain yaitu suatu fragmen DNA yang secara teoritis bukan merupakan DNA cetakan yang diinginkan. DNA tersebut digunakan untuk menggantikan DNA cetakan dalam reaksi kontrol (negatif). Di samping itu diperlukan juga control positif.

12. **Sumber Kontaminasi yang Lain**

Beberapa faktor lain yang juga merupakan sumber kontaminasi, antara lain:

a. DNA Plasmid atau phage yang mengandung sekuen target yang akan diampifikasi.

b. Fragmen DNA restriksi yang telah dipurifikasi dan akan digunakan sebagai sekuen target. Jika fragmen restriksi tersebut diisolasi dari gel agarosa maka sebaiknya alat elektroforesis yang akan digunakan untuk memisahkan fragmen tersebut direndam dulu di dalam larutan HCl 1N. Sebaiknya digunakan pisau yang masih baru untuk memotong fragmen dari gel. Pada waktu memotong fragmen DNA dari gel, letakkan gel tersebut di atas plastik sehingga gel tersebut tidak langsung menempel pada transiluminator UV yang digunakan untuk mengetahui letak fragmen DNA.

c. Mesin sentrifugasi

d. Campuran es kering-etanol yang digunakan untuk mengendapkan DNA.

Anda sudah selesai mempelajari materi tentang pengembangan teknik PCR. Pada topik selanjutnya Anda akan menambah wawasan tentang Prosedur dan Aplikasi Teknik PCR dalam Diagnostik.
Latihan

1) Jelaskan perbandingan antara Reverse Transcriptase PCR, Real Time PCR, Nested PCR dan Multiplex PCR dengan PCR konvensional atau PCR standar!

2) Jelaskan beberapa faktor yang dapat mempengaruhi keberhasilan pemeriksaan PCR!

Petunjuk Jawaban Latihan

Untuk membantu Anda dalam mengerjakan soal latihan tersebut silakan pelajari kembali materi tentang:

1) Jenis-jenis modifikasi Teknik PCR
2) Faktor-Faktor yang Mempengaruhi Keberhasilan PCR

Ringkasan

1. Teknik PCR konvensional/ standar biasanya menggunakan satu pasang primer oligonukleotida untuk mengamplifikasi bagian tertentu dari genom agen infeksi serta dilakukan pada tabung. Seiring perkembangan teknologi dan keperluan pemeriksaan di lapangan maka teknik PCR dapat dimodifikasi sehingga memberikan hasil yang lebih baik lagi. Beberapa jenis modifikasi teknik PCR standar di antaranya: Real Time PCR (Q-PCR), Reverse Transcriptase PCR (RT-PCR), Nested PCR, Multiplex PCR, PCR-ELISA, Touch Down PCR.

2. Keberhasilan PCR sangat ditentukan oleh beberapa faktor, di antaranya: (1) deoksiribonukleotida triphosphat (dNTP), (2) oligonukleotida primer, (3) cetakan DNA, (4) komposisi larutan buffer, (5) Jumlah siklus reaksi, (6) enzim yang digunakan dan (7) faktor teknis dan non teknis lainnya, misalnya kontaminasi. Keunggulan PCR adalah kemampuannya dalam melipatgandakan suatu fragmen DNA sehingga dapat mencapai 10^9 kali lipat. Dengan demikian, kontaminasi fragmen DNA dalam jumlah sangat sedikit sekali pun dapat menyebabkan terjadinya kesalahan yaitu dengan didapatkannya produk amplifikasi yang tidak diinginkan.

Tes 2

1) Jenis modifikasi pemeriksaan PCR yang dapat digunakan untuk mendeteksi langsung beberapa set primer dalam satu langkah pemeriksaan adalah:
 A. Nested PCR
 B. Multiplex PCR
 C. Reverse Transcriptase PCR
 D. Real Time PCR (Quantitatif –PCR/ Q-PCR)
2) Jenis modifikasi Pemeriksaan PCR yang dapat digunakan untuk mendeteksi langsung dua set primer dalam dua langkah pemeriksaan adalah:
 A. Nested PCR
 B. Multiplex PCR
 C. Reverse Transcriptase PCR
 D. Real Time PCR (Quantitatif –PCR/ Q-PCR).

3) Di antara faktor-faktor yang mempengaruhi keberhasilan pemeriksaan PCR adalah mikro pipet. Untuk lebih memperkecil kemungkinan kontaminasi dari mikropipet, maka setiap kali selesai digunakan dianjurkan untuk mencuci bagian dalam dan ujung pipet tersebut menggunakan:
 A. alkohol
 B. air steril
 C. buffer PCR
 D. NaCl fisiologis

4) Di antara faktor yang harus diperhatikan agar pemeriksaan PCR berhasil sesuai dengan yang diharapkan adalah pemisahan ruangan pada proses PCR. Tata letak ruangan yang direkomendasi ideal minimal adalah sebagai berikut:

Peralatan yang seharusnya ada di area 3 (deteksi), di antaranya:
 A. sentrifuge
 B. mesin PCR
 C. safety cabinet
 D. perangkat elektroforesis

5) Pengembangan metode PCR yang hasil amplifikasinya dianalisis selama proses amplifikasi dengan menggunakan pewarna DNA atau pelacak berfluoresensi, sehingga analisis data dilakukan tanpa pemisahan dengan elektroforesis adalah...
 A. Nested PCR
 B. Multiplex PCR
 C. Reverse Transcriptase PCR
 D. Real Time PCR (Quantitatif –PCR/ Q-PCR)
6) Berikut ini pernyataan yang benar tentang Real Time PCR dibandingkan terhadap PCR konvensional, kecuali....
 A. sensitivitas lebih tinggi
 B. presisi lebih rendah
 C. otomatis
 D. pengamatan dapat dilakukan saat reaksi berlangsung

7) Zat warna berfluoresensi yang biasa digunakan untuk mendeteksi keberadaan DNA pada metode real-time PCR adalah...
 A. Methylene Blue
 B. DAPI
 C. SYBR® Green I
 D. Ethidium Bromide

8) Jenis modifikasi pemeriksaan PCR yang digunakan untuk mengamplifikasi cDNA dari mRNA atau langsung dari mikroorganisme yang memiliki materi genetik RNA (virus) adalah....
 A. Nested PCR
 B. Multiplex PCR
 C. Reverse Transcriptase PCR
 D. Real Time PCR (Quantitatif –PCR/ Q-PCR)

9) Jenis modifikasi pemeriksaan PCR yang mencegah amplifikasi sekuen nonspesifik dengan memvariasikan suhu annealing adalah....
 A. Touchdown PCR
 B. Nested PCR
 C. Reverse Transcriptase PCR
 D. Multiplex PCR

10) Untuk mengecek ada tidaknya kontaminan di dalam komponen reaksi yang digunakan, penting dilakukan kontrol. Cara melakukan kontrol ialah....
 A. memipet sejumlah aquadest ke dalam aliquot kemudian di running menggunakan PCR
 B. mencampurkan komponent-komponen reaksi seperti biasa, tetapi tidak ditambahkan DNA cetakan kemudian dilakukan inkubasi seperti biasa
 C. mencampurkan komponen-komponen reaksi seperti biasa, tetapi tidak ditambahkan primer kemudian dilakukan inkubasi seperti biasa
 D. mencampurkan komponen-komponen reaksi seperti biasa, tetapi tidak ditambahkan dNTP kemudian dilakukan inkubasi seperti biasa
Cocokkanlah jawaban Anda dengan Kunci Jawaban Tes 1 yang terdapat di bagian akhir Bab. Hitunglah jawaban yang benar. Kemudian, gunakan rumus berikut untuk mengetahui tingkat penguasaan Anda terhadap materi Bab 1.

\[\text{Tingkat penguasaan} = \frac{\text{Jumlah Jawaban yang benar}}{\text{Jumlah Soal}} \times 100\% \]

Arti tingkat penguasaan:
- 90 - 100% = baik sekali
- 80 - 89% = baik
- 70 - 79% = cukup
- < 70% = kurang

Apabila Anda mencapai tingkat penguasaan 80% atau lebih, silakan meneruskan mempelajari Topik 3. Bagus!
Jika masih di bawah 80%, Anda harus mengulangi materi Topik 2, terutama bagian yang belum dikuasai.
Topik 3
Prosedur dan Aplikasi PCR dalam Diagnostik

Setelah mempelajari Topik Pengembangan Teknik PCR, selanjutnya Anda akan mempelajari Topik 3 yaitu Prosedur dan Aplikasi Teknik PCR dalam Diagnostik. Silakan Anda cermati penjelasannya berikut ini.

A. PERALATAN, BAHAN DAN PROSEDUR YANG DIGUNAKAN DALAM PROSES PCR

Sebelum melakukan prosedur amplifikasi DNA dengan teknik PCR, diperlukan pengenalan peralatan dan bahan terlebih dahulu sesuai dengan metode pengembangan PCR masing-masing. Berikut ini akan disajikan persiapan alat, bahan dan prosedur dalam teknik PCR yang rutin digunakan yaitu teknik PCR standar atau konvensional.

1. Peralatan

Peralatan dasar di laboratorium biologi molekuler sudah dibahas pada topik sebelumnya pada Bab 6 tentang Teknik dasar Analisis Biologi Molekuler. Pada sub topik ini hanya akan dibahas peralatan yang diperlukan terutama untuk teknik PCR konvensional diperlukan peralatan sebagai berikut:

a. **Biosafety Cabinet**

Komponen utama biosafety cabinet HEPA (High Efficiency Particulate Air) dan ULFA (Ultra Low Penetration Air), merupakan jantung dari Biosafety Cabinet terbuat dari filter tipe kering berbentuk mikrofiber borosilikat lembaran tipis seperti kertas. Fungsinya menyaring debu, asap, bakteri, jelaga, serbuk sari dan partikel radioaktif.

b. **Mesin PCR** (PCR Thermal cycler)

Mesin PCR merupakan suatu alat yang dipergunakan untuk mengamplifikasi atau menggandakan untaian basa-basa DNA yang dibatasi oleh pasangan primer pengapitnya melalui pengaturan suhu dan penggunaan enzim tahan panas tinggi. Dalam proses amplifikasi tersebut, mesin PCR akan bekerja secara otomatis sesuai permintan pengaturan suhu untuk tahap denaturasi, annealing maupun ekstensi/ elongasi serta berapa siklus yang diperlukan sampai dengan proses PCR selesai.

c. **Pipet Mikro**

Pipet dimaksudkan alat untuk mengambil larutan dari suatu tempat ke tempat lain dalam jumlah tertentu secara akurat. Alat ini diperlukan dalam teknik PCR untuk mengambil larutan atau suspensi dengan ketepatan yang sangat tinggi dan volume yang relatif kecil (dalam µL).

Dalam pemakaian pipet mikro perlu diperhatikan kisaran volume yang sesuai untuk pipet yang bersangkutan. Angka yang tercantum di dalam pipet menunjukkan volume maksimum yang dapat diambil pemilihan ukuran pipet
dan tips pipet mikro tergantung pada volume yang akan diambil. Misalnya untuk mengambil volume 80 µL, kita gunakan pipet mikro dengan kisaran 10-100 µL. Pengambilan bisa dengan pipet mikro yang 1000 µL, tetapi kurang akurat. Demikian pula dapat dilakukan dengan pipet ukuran 0-10 µL, tetapi harus diulang beberapa kali. Hal tersebut dapat menyebabkan kesalahan yang cukup besar karena dengan pengambilan berulang kali terdapat kesalahan setiap kali pemipetan walaupun dengan kesalahan yang sangat kecil.

d. Tabung (tubes)
Tabung mikro (micro tubes) dipergunakan dalam berbagai proses di laboratorium molekuler termasuk proses PCR dalam berbagai volume. Dikenal berbagai macam ukuran tabung, mulai ukuran kecil sampai besar, di antaranya ukuran 0,5 mL; 1,5 mL; 2,0 mL. (Maftuchah, 2014).

e. Perangkat elektroforesis
Perangkat elektroforesis digunakan untuk mendeteksi secara visual hasil produk PCR (Amplikon).

2. Bahan (Reagensia) yang diperlukan dalam proses PCR
Sebelum melakukan PCR, komponen-komponen yang akan digunakan dipersiapkan terlebih dahulu, yaitu:

a. Larutan buffer stock
100 mM Tris-HCl pH 8,3 (pada suhu 25°C); 500 mM KCl; 1,5 mM MgCl2; 0,1% (b/v) gelatin. Untuk mempersiapkan arutan buffer harus digunakan komponen-komponen yang steril.

b. Larutan dNTP
Larutan dATP, dTTP, dCTP, dGTP masing-masing disiapkan dengan konsentrasi 10 mM sebagai larutan stock. Kemudian buatlah larutan dNTP yang merupakan campuran keempat deoksiribonukleotida trifosfat sehingga masing-masing deoksinukleotida trifosfat mempunyai konsentrasi 0,2 mM. Sterilkan larutan dNTP dengan menggunakan filter. Larutan deoksinukleotida trifosfat tersebut harus disimpan di dalam freezer bersuhu -20°C.

c. Larutan oligonukleotida primer
Sebelum digunakan untuk membuat larutan stok primer, oligonukleotida yang diperoleh dari hasil sintesis dengan DNA synthesizer sebaiknya dimurnikan terlebih dahulu dengan cara tertentu. Pada saat ini sudah tersedia kit komersial yang dapat digunakan untuk memurnikan DNA. Bahkan jika primer dipesan dari perusahaan yang bagus, biasanya dikirim sudah dalam keadaan siap digunakan.

d. Larutan enzim Taq DNA polymerase
Enzim Taq DNA polymerase sebaiknya disiapkan menjelang digunakan. Encerkan stok enzim dengan menggunakan larutan 1X buffer PCR steril sehingga diperoleh konsentrasi 2,5 unit/µL. Sebelum digunakan, enzim yang telah encerkan tadi harus selalu diletakkan pada es. Oleh karena enzim ini merupakan salah satu komponen yang termasuk mahal, enzim Taq DNA
polymerasedisiapkan seperlunya saja dan sisanya disimpan kembali dalam freezer bersuhu - 20°C.

3. **Prosedur**
 Pada reaksi PCR diperlukan DNA template, primer spesifik, enzim DNA polimerase yang thermostabil, buffer PCR, ion Mg 2+, dan thermal cycler.

 Cara Kerja:
 PCR mix solution, untuk keperluan 10 μL pereaksi, maka campurkan:
 Aquadest steril = 2 μL ; PCR mix = 5 μL ; Primer 1(10pmole) = 1 μL ; Primer 2 (10pmole) = 1 μL dan Sampel DNA = 1 μL.

 Contoh PCR Program:
 1. Hot start (denaturasi awal) 94 °C selama 2 menit
 2. Siklus amplifikasi diulang 31 kali terdiri dari
 a) Denaturasi 94 °C selama 60 detik
 b) Annealing 58 °C selama 45 detik
 c) Ekstensi 72 °C selama 60 detik
 3. Periode ekstensi pada suhu 72 °C selama 5 menit

 Catatan: jika primer diganti program PCR menyesuaikan susunan primer dan panjang DNA produk amplifikasi yang diinginkan.(Fatchiyah dkk., 2012).

Selanjutnya Anda akan mempelajari dan mencermati sub topik tentang Aplikasi Polymerase Chain Reaction (PCR) dalam menegakkan diagnosis penyakit sebagai berikut.

B. APLIKASI POLYMERASE CHAIN REACTION (PCR) DALAM MENEGAKKAN DIAGNOSIS PENYAKIT

Saat ini PCR sudah diaplikasikan secara luas untuk berbagai macam kebutuhan, di antaranya untuk isolasi gen, DNA Sequencing, Identifikasi Forensik dan untuk Diagnosis Penyakit. PCR banyak membantu dalam penelitian dan diagnosis penyakit. Teknik ini juga telah lama menjadi metode standar di semua laboratorium yang melaksanakannya.(Joshie dan Deshpande, 2010).

Dalam bab ini yang akan dibahas lebih lanjut adalah aplikasi PCR dalam menegakkan diagnosis penyakit baik penyakit infeksi maupun penyakit genetik.

1. **Aplikasi Dalam Menegakkan Diagnosis Penyakit Infeksi**
 Secara umum penyebab infeksi dapat dideteksi dengan cara mikrobiologi dan imunologi. Cara imunologi memiliki keterbatasan karena diperlukan titer yang tinggi dan titer antibodi spesifik dapat tetap tinggi untuk waktu lama setelah infeksi. Sedangkan cara mikrobiologi memerlukan tahapan dari pembiakan spesimen terlebih dahulu pada medium primer, kemudian jika ada pertumbuhan, maka koloni dibiaakan kembali pada medium selektif. Setelah diperoleh kultur murni baru dilakukan identifikasi yang biasanya memerlukan waktu yang cukup lama. Di samping itu ada beberapa bakteri yang tidak bisa dibiaakan.
PCR mempunyai beberapa keunggulan untuk deteksi patogen penyebab infeksi. Teknik ini sangat bermanfaat untuk patogen yang tidak bisa atau sulit dibiakan secara in vitro, patogen yang mempunyai inkubasi lama dan jika patogen itu tidak dapat diperoleh dalam jumlah yang cukup banyak. Teknik ini dapat digunakan untuk mendeteksi berbagai agen penyebab infeksi seperti virus, bakteri, jamur maupun parasit. Di samping keunggulannya, teknik PCR memiliki kelemahan yaitu tidak dapat membedakan apakah patogen masih hidup atau sudah mati. Beberapa deteksi patogen dengan teknik PCR di antaranya:

a. Human Papilloma Virus (HPV)
Virus Papilloma pada genital manusia adalah suatu kelompok virus yang menyebabkan beberapa penyakit dan kanker. Mengingat arti penting virus ini, maka deteksi dan penentuan tipe (typing) virus papilloma pada jaringan yang normal maupun sehat perlu dilakukan untuk mengetahui peranan virus ini dalam perkembangan kanker maupun ketidaknormalan pertumbuhan yang lain. Ting dan Manos (1990 dalam Yuwono, 2006) telah mengembangkan suatu metode deteksi virus papilloma dengan PCR. Metode tersebut dikembangkan dengan mengidentifikasi suatu daerah homolog di dalam genom tipe virus papilloma yang kemudian dijadikan dasar untuk mendesain primer untuk amplifikasi. (Yuwono, 2006).

b. Deteksi Infeksi Cytomegalovirus (CMV)

c. Deteksi Infeksi Virus Influenza A (H1N1)
Virus Influenza A(H1N1) sebelumnya disebut flu babi dapat menyebabkan wabah, bahkan satu fase lagi dari fase pandemi. Penyakit berbahaya seperti ini memerlukan diagnosa yang cepat dan akurat. PCR merupakan teknik yang sering digunakan. Teknologi saat ini memungkinkan diagnosa dalam hitungan jam dengan hasil akurat. Disebut akurat karena PCR mengamplifikasi daerah tertentu DNA yang merupakan ciri khas virus Influenza A (H1N1) yang tidak dimiliki oleh virus atau makhluk lainnya.
d. Deteksi Infeksi Mycobacterium tuberculosis (M.tuberculosis)

Untuk mendeteksi M. tuberculosis dengan metode pembiakan diperlukan 50-100 bakteri per mL dan waktu 3-8 minggu karena waktu regenerasi yang lama. Sedangkan identifikasi berdasarkan fenotip yang merupakan hasil ekspresi gen, bukan merupakan sifat stabil karena dipengaruhi oleh kondisi pertumbuhan. Dengan demikian deteksi secara PCR yang berdasarkan amplifikasi suatu fragmen DNA spesifik untuk pathogen ini menjadi pilihan yang tepat.

Resistensi terhadap rifampin karena adanya mutasi pada gen rpoB, yang menyandi polymerase subunit B. Uji klinik untuk deteksi adanya mutasi ini digunakan Real-time PCR dengan pelacak berfluoresensi (molecular beacons). Pada uji ini diperlukan lima pelacak dengan lima warna. Setiap pelacak akan menempel pada daerah tertentu pada gen rpoB. Setiap pelacak dibuat sedemikian rupa sehingga tidak akan menempel target apabila ada sekuen yang berbeda dengan sekuen galur yang peka rifampin, walaupun hanya berbeda satu basa. Pelacak ini akan memancarkan warna jika menempel target, maka apabila ada satu dari lima warna tidak muncul, hal ini menunjukkan bahwa bakteri resisten terhadap rifampin. (Sudjadi, 2008).

Saat ini teknik RT-PCR dipergunakan untuk mendeteksi Mycobacterium, terhadap genus dipergunakan primer 16S ribosomal ribonucleic acid (rRNA), sedangkan untuk mendeteksi spesies dipergunakan primer insertion sequence (IS)6110 dan MPB64. Primer IS6110 dan MPB64 digunakan untuk membedakan M. tuberculosis dengan MNT. Pemeriksaan multiplex RT-PCR (M RT-PCR) merupakan alternatif pemeriksaan limfadenitis TB selain secara histopatologi, dan telah diaplikasikan untuk deteksi sekuen Mycobacterium deoxyribonucleic acid (DNA) pada berbagai bahan pemeriksaan.

Amplifikasi asam nukleat DNA M. tuberculosis dengan menggunakan teknik M RT-PCR ini lebih akurat, proses amplifikasi dan juga analisisnya terjadi bersamaan sehingga waktu yang dibutuhkan untuk identifikasi DNA bakteri akan lebih singkat, dan dapat mendeteksi 1–10 basil di dalam berbagai sampel klinis. Berdasarkan hasil penelitian yang dilakukan oleh Mike Rezeki dkk. (2014) merekomendasikan bahwa pemeriksaan multiplex real time polymerase chain reaction (M RT PCR) dapat diterapkan untuk konfirmasi diagnosis limfadenitis tuberkulosis pada kasus tersangka kuat limfadenitis TB secara klinis, tetapi hasil histopatologi tidak memperlihatkan limfadenitis TB. Keterbatasan pada penelitian ini adalah tidak dilakukan pengukuran konsentrasi DNA setelah ekstraksi DNA sehingga ketika dilakukan pemeriksaan M RT-PCR kemungkinan ada beberapa sampel yang memiliki konsentrasi DNA sangat rendah sehingga memberikan hasil negatif palsu.
Simpulan, multiplex real time PCR memiliki validitas yang sedang untuk diagnosis limfadenitis tuberkulosis pada spesimen blok parafin. (Mike Rezeki dkk. (2014).

Diagnosis Tuberkulosis pada anak yang sulit menyebabkan under dan over diagnosis TB anak. Hal ini dapat mengakibatkan morbiditas dan mortalitas yang tinggi. Menegakkan diagnosis dini TB pada anak sangat penting dalam rangka pengendalian penyakit TB. Namun pendekatan diagnosis yang ada saat ini kurang sensitif.

GeneXpert MTB/ RIF adalah uji molekuler dengan metode PCR memberikan sensitivitas tinggi dengan cara melipatgandakan DNA M. tuberculosis (MTB). Hal ini telah dibuktikan pada penelitian yang dilakukan oleh Berlian,dengan tujuan membandingkan hasil pemeriksaan GeneXpert MTB/ RIF dengan kultur dahak MTB pada media Lowenstein Jensen (LJ) dalam menegakkan diagnosis TB pada anak yang diduga TB paru.

Hasil penelitiannya menunjukkan bahwa GeneXpert MTB/ RIF mempunyai sensitivitas dan spesifisitas tinggi dalam menegakkan diagnosis TB. Terdapat kesepadanan hasil antara GeneXpert MTB/ RIF dan kultur dahak berdasarkan kelompok umur dan kelompok manifestasi klinis TB. (Berlian, 2015).

e. Deteksi Infeksi Gonore

Gonore merupakan penyakit menular seksual (PMS) yang paling sering dijumpai. Kelainan ini disebabkan oleh Neisseria gonorrhoeae termasuk golongan diplokok berbentuk seperti ginjal dengan diameter 0.8 µm bersifat tahan asam. Secara morfologik terdiri dari empat tipe, yaitu tipe 1 dan 2 mempunyai pili yang bersifat virulen,serta tipe 3 dan 4 tidak mempunyai pili dan bersifat tidak virulen, pili akan melekat pada mukosa epitel dan menyebabkan terjadinya reaksi peradangan.

Gambaran klinis gonore pada wanita asimtomatis, pada umumnya wanita datang berobat jika sudah terjadi komplikasi. Sasaran primer Gonokok adalah endoservik. Diagnosis gonore ditegakkan berdasarkan anamnesis, pemeriksaan klinis dan pemeriksaan laboratorium baik sediaan langsung maupun kultur dengan sediaan yang diambil dari servik, muara kelenjar bartolini atau uretra.

Untuk mendapatkan spesimen tersebut dibutuhkan seorang tenaga kesehatan dan juga posisi tertentu yang terkadang membuat penderita kurang nyaman. Dengan metode SOLVS, tidak dibutuhkan tenaga kesehatan untuk pengambilan spesimen dan penderita merasa lebih nyaman karena melakukan sendiri.

Pemeriksaan yang lebih sensitif untuk penegakan diagnosis gonore adalah dengan metoda PCR, dimana pada metoda ini spesimen cukup diambil dari vagina dengan menggunakan metoda SOLVS. Garrow et al., dalam penelitiannya membuktikan bahwa metoda SOLVS mempunyai sensitivitas dan spesifitas yang tinggi untuk mendiagnosis adanya infeksi yang disebabkan N.gonorroae, Chlamydia dan T. vaginalis.

Spesimen pada kapas lidi dilakukan ekstraksi DNA, kemudian dilakukan amplifikasi DNA sebanyak 40 siklus lalu dilakukan analisa dengan elektroforesis gel agaros 2 %, gen target primer untuk Gonokokus adalah 23S rRNA, nspAdorf1. Pada proses PCR tersebut akan dihasilkan Hind III untuk orf1 dan Hinf1 untuk 23s rRNA. Setelah semua proses
amplifikasi selesai, kemudian dilakukan pewarnaan dengan etidium-bromida, hasil positif ditunjukkan dengan adanya pita fragmen DNA pada gel agarosa.

f. Deteksi infeksi difteri

Corynebacterium diphtheriae merupakan agen penyebab penyakit difteri. Faktor virulensi utama *C. diphtheriae* adalah toksigenisitas (kemampuan memproduksi toksin) bakteri toxin. Produksi toksin diatur seperangkat gen yang disebut gen tox/dtx dan diregulasi oleh gen dtxR. Gold standard untuk pemeriksaan toksigenisitas *C. diphtheriae* adalah dengan metode konvensional (Elek test, Guinea pig dan vero cell cytotoxicity), namun Elek test mempunyai variasi hasil yang cukup beragam, membutuhkan waktu yang cukup lama, serta masalah ketersediaan reagen standar. Diri sisi lain, pemeriksaan dengan hewan coba membutuhkan biaya yang sangat tinggi dan hanya bisa dilakukan di laboratorium tertentu. Penggunaan hewan percobaan juga banyak ditentang oleh para pecinta satwa.

Salah satu alternatif pemeriksaan toksigenisitas *C. diphtheriae* adalah teknik PCR (*Polymerase Chain Reaction*) dengan target gen tox region A dan B yang telah dikembangkan oleh Nakao, et al. Kendala muncul karena bakteri yang tidak mempunyai gen tox (strain nontoksigenik) tidak terdeteksi, padahal beberapa laporan menyebutkan bahwa strain nontoksigenik juga dapat menyebabkan penyakit mematikan dan dapat berubah menjadi toksigenik bila terinsersi oleh *Corynephage* yang membawa gen tox. Oleh sebab itu, dilakukan penelitian oleh Sunarno dkk. (2013), yang bertujuan untuk mengevaluasi potensi gen *dtx* dan *dtxR* sebagai marker deteksi *C. diphtheriae* sekaligus pemeriksaan toksigenisitas bakteri menggunakan PCR Multipleks.

Hasil penelitiannya diperoleh keberadaan gen *dtx* pada strain toksi-genik dan gen *dtxR* pada semua strain *C. diphtheriae* dapat dideteksi dengan metode PCR Multipleks dengan target gen *dtx* dan *dtxR*, seperti yang tampak pada Gambar 8.23. Sesuai dengan panjang produk PCR yang dihasilkan oleh amplifikasi gen *dtx* dan *dtxR* berdasarkan disain primer yang dibuat, semua sampel *C. diphtheriae* memperlihatkan pita pada 182 bp, sedangkan pita pada 139 bp hanya tampak pada sampel *C. diphtheriae* toksigenik. (Sunarno, dkk. 2013).
Gambar 8.23. Hasil Pemeriksaan PCR Multiplex. Sampel 1, 2, 4, 5, 6, 7, 8, 9, 11, dan 13 adalah isolat *C. diptheriae* toksigenik, tampak 2 garis (139 bp dan 182 bp). Sampel 12 adalah isolat *C. diptheriae* non toksigenik, tampak 1 garis (182 bp). Sampel 3 dan 10 adalah isolat non *C. diptheriae*, tidak tampak garis sama sekali. N adalah kontrol negatif (aquadest) dan M adalah Marker (Generuler).

Di samping itu, teknik PCR dimanfaatkan untuk membantu menegakkan diagnostik yang disebabkan oleh mikroorganisma yang lainnya seperti yang tampak pada Tabel 8.5 berikut ini.

Tabel 8.5 Contoh Metode Molekuler (PCR) untuk Diagnosis Penyakit Infeksi (Speers, 2006).

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virology</td>
<td>Herpes simplex virus, cytomegalovirus, Epstein-Barr virus, varicella zoster virus, human herpes virus type 6, 7, 8 respiratory viruses (such as influenza virus, respiratory syncytial virus, parainfluenza virus, adenovirus, rhinovirus)</td>
</tr>
<tr>
<td>Parasitology</td>
<td>Plasmodium spp., T. gondii</td>
</tr>
<tr>
<td>Mycology</td>
<td>P. firoveci, Aspergillus spp.</td>
</tr>
</tbody>
</table>

* the complement of molecular diagnostic tests available varies between laboratories
* severe acute respiratory syndrome coronavirus
* human immunodeficiency virus
2. **Aplikasi Dalam Menegakkan Diagnosis Penyakit Genetik**

Kemampuan mendiagnosis adanya penyakit keturunan tertentu pada manusia pada analisis molekuler membuka kemungkinan untuk seseorang apakah individu tersebut atau anaknya berisiko membawa penyakit genetik. Analisis DNA dapat digunakan untuk identifikasi pembawa penyakit keturunan; untuk diagnosis prenatal kelainan genetik dan untuk diagnosis awal sebelum muncul gejala klinis.

Penyakit genetik yang sudah dapat dideteksi menggunakan teknik PCR di antaranya:

a. **Sickle cell anemia** (Sel Sabit)

Sickle cell anemia (Sel Sabit) merupakan penyakit genetik yang dapat dilihat dengan adanya bentuk sel darah merah yang pipih panjang seperti bulan sabit. Pada waktu dulu penyakit ini berakibat vatal karena adanya infeksi, kegagalan ginjal, kegagalan jantung, atau thrombosis. Sel darah merah dalam bentuk ini mudah terperangkap dalam pembuluh darah yang kecil yang menyebabkan gangguan sirkulasi, dan menyebabkan kerusakan organ tersebut. Sel darah tersebut juga mudah pecah daripada sel yang normal. Sel tersebut mempunyai waktu hidup lebih pendek sehingga dapat menyebabkan anemia.

Penyakit anemia sel sabit diturunkan secara genetik. Pasien dengan anemia sel sabit homozigot untuk gen abnormal yang terletak pada kromosom autosomal. Anak yang menerima gen abnormal dari salah satu orang tuanya dan menerima gen normal dari orang tuanya akan menjadi pembawa anemia sel sabit. Anak yang heterozigot tersebut biasanya tidak menunjukkan gejala.

Substitusi valin untuk glutamat pada β6 hemoglobin S disebabkan perubahan satu basa, T menjadi A. Mutasi dapat dikenali dengan memotong DNA dengan enzim restriksi yang mengenal urutan pada lokasi mutan. MstII mengenal urutan CCTNAGG (dimana N dapat segala basa), yang terdapat pada gen hemoglobin A rantai β (gen β⁰) tetapi tidak
pada hemoglobin S (βS). Pada pemotongan gen itu dengan MstI, genβS menghasilkan fragmen 1,3 kb. Sedangkan gen βA menghasilkan fragmen 1,1 kb. Fragmen tersebut dipisahkan dengan elektroforesis dan divisualisasi dengan Southern blotting dengan pelacak DNA berlabel 32P yang komplemen dengan fragmen 1,1 kb. Fragmen 1,3 kb juga terhibridisasi oleh pelacak ini. Autoradiogram menunjukkan apakah gen A, gen S atau keduanya terdapat dalam sampel.

b. Ovalositosis

Ovalositosis merupakan sifat bawaan yang diturunkan secara dominan autosomal dengan sel darah merah berbentuk oval. Dasar molekular ovalositosis adalah perubahan protein band-3 eritrosit karena adanya delesi 27 pasang basa, dan akibatnya tidak ada 9 residu asam amino (400-408) pada batas antara bagian sitoplasmik dan membrane.

Kelainan genetik ini banyak ditemukan pada daerah endemik malaria seperti thalasemia, defensiensi enzim dehidrogenase glukosa -6-fosfat (G6PD), sickle cell anemia dan hemoglobin E. Tampaknya mutasi genetik tersebut memberikan keuntungan karena individu dengan mutasi tersebut tahan terhadap infeksi malaria. Dasar molekular yang menarik dari ovalositosis adalah tidak adanya bentuk homozigot delesi 27 pasang basa (pb). Hal ini dapat terjadi karena kondisi homozigot mati selama perkembangan fetus, sebab band-3 di ginjal berfungsi untuk transport ion dan keseimbangan asam basa.

c. Peramalan Hemofilia A

Ada dua macam polimorfisme yang ada pada alel faktor VIII, yaitu yang mempengaruhi suatu enzim restriksi dan yang tidak. Polimorfisme dapat dideteksi dengan analisis Southern blot fragmen-fragmen DNA yang dipotong dengan suatu enzim restriksi tertentu, tetapi metode semacam ini cukup memakan waktu. Metode alternatif untuk mendeteksi hemophilia A adalah metode PCR (Kogan dan Gitschier, 1990 dalam Yuwono, 2006) yang jauh lebih sederhana disbanding metode Southern blot.
Biologi Sel dan Molekuler

Selamat! Anda sudah menyelesaikan pembelajaran tentang Teknik Amplifikasi Asam Nukleat. Selanjutnya, Anda akan mempelajari bab 9 tentang Identifikasi Asam Nukleat dan Protein.

Latihan

1) Jelaskan peralatan dan bahan utama yang umum digunakan untuk melakukan pemeriksaan PCR!
2) Jelaskan beberapa contoh aplikasi PCR dalam menegakkan diagnostik berbagai penyakit baik penyakit infeksi maupun penyakit genetik!

Petunjuk Jawaban Latihan

Untuk membantu Anda dalam mengerjakan soal latihan tersebut silakan pelajari kembali materi tentang:
1) Alat, Bahan dan Cara Kerja PCR
2) Aplikasi PCR dalam menegakkan diagnosis penyakit.

Ringkasan

1. Untuk melakukan amplifikasi DNA dengan teknik PCR diperlukan pengenalan peralatan dan bahan serta prosedur standar sesuai dengan metode pengembangan PCR masing-masing. Peralatan yang rutin digunakan dalam melakukan teknik PCR standar atau konvensional, di antaranya biosafety cabinet, mesin PCR (PCR thermal cycler), pipet mikro, tabung, perangkat elektroforesis, sentrifuge, dan lain-lain. Sedangkan bahan utama yang diperlukan untuk melakukan pemeriksaan PCR di antaranya: larutan buffer stok, larutan dNTP, larutan oligonukleotida primer, larutan enzim Taq DNA polymerase, dan lain-lain. Di samping itu diperlukan prosedur teknik PCR yang terstandar atau sesuai kit insert yang diterbitkan oleh masing-masing perusahaan.

2. Saat ini PCR sudah diaplikasikan secara luas untuk berbagai macam kebutuhan, di antaranya untuk isolasi gen, DNA Sequencing, IdentifikasiForensik dan untuk Diagnosis Penyakit. PCR banyak membantu dalam penelitian dan diagnosisis penyakit. Teknik ini juga telah lama menjadi metode standardi semua laboratorium yang melaksanakannya. Aplikasi PCR saat ini sangat mendukung dalam menegakkan diagnosis penyakit baik penyakit infeksi maupun penyakit genetik. Beberapa contoh aplikasi PCR dalam menegakkan diagnosis penyakit infeksi adalah dalam (1) mendeteksi virus, seperti Human Papilloma Virus (HVP), Cytomegalovirus (CMV), Influenza A (H1N1), Epstein Barr Virus (EBV) dan lain-lain; (2) mendeteksi bakteri, seperti Mycobacterium tuberculosis (MTB), Corynebacterium diphteriae, Neisseria gonorhoeae, dan lain-lain; (3) mendeteksi parasit seperti: Toxoplasma gondii, Plasmodium spp.; dan mendeteksi jamur seperti: P. jiroveci dan Aspergillus spp. Di
samping itu PCR dapat diaplikasikan untuk menegakkan diagnosis penyakit genetic/keturunan, seperti mendeteksi sickle cell anemia (anemia sel sabit), ovalositosis, Hemofilia A, Thalasemia, dan lain-lain.

Tes 3

1) Alat yang digunakan untuk mengamplifikasi atau menggandakan untaian basa-basa DNA yang dibatasi oleh pasangan primer pengapitnya melalui pengaturan suhu dan penggunaan enzim tahan panas tinggi pada pemeriksaan PCR adalah:
 A. mikro pipet
 B. sentrifuge
 C. perangkat elektroforesis
 D. mesin PCR (PCR thermal cycler)

2) Proses untuk membuka ikatan untai ganda DNA (dsDNA) sehingga terjadi pemisahan untai ganda DNA menjadi untai tunggal DNA (ssDNA) berlangsung pada suhu....
 A. 94 °C
 B. 62 °C
 C. 72 °C
 D. 120 °C

3) Dari berbagai keunggulan PCR, terdapat kelemahan dari pemeriksaan tersebut terutama dalam menegakkan diagnosis penyakit infeksi, di antaranya:
 A. kurang sensitif
 B. harganya relatif mahal
 C. tidak dapat digunakan untuk uji kuantitatif
 D. tidak dapat membedakan apakah patogen masih hidup atau sudah mati

4) Sebelum digunakan, stok enzim *Taq DNA polymerase* harus diencerkan terlebih dahulu menggunakan....
 A. deion
 B. aquadest
 C. 1X buffer fosfat
 D. 1X buffer PCR steril

5) Resisten terhadap rifampin merupakan penanda untuk TB MDR sehingga tidak perlu dilakukan uji kepekaan terhadap semua obat tuberkulosis. Resistensi terhadap rifampin terjadi karena adanya....
 A. mutasi pada kromosom 45, XO (Monosomik)
 B. mutasi pada gen rpoB, yang menyandi polymerase subunit B
 C. mutasi pada gen gyrA
 D. mutasi pada gen ParA dan ParC
6) Saat ini telah berkembang metode identifikasi *M. tuberculosis* berbasis molekuler yang lebih cepat, dengan tingkat sensitivitas dan spesifisitas yang tinggi, sehingga mampu menegakkan diagnosis penyakit TB dengan lebih dini, metode tersebut adalah....
 A. Lowenstein Jensen
 B. VITEK 2 Compact
 C. Gene Xpert MTB/RIF
 D. BACTEC

7) Sebelum melakukan PCR, komponen-komponen yang harus dipersiapkan terlebih dahulu adalah sebagai berikut, kecuali....
 A. Larutan *buffer stock*
 B. Larutan dNTP
 C. Larutan elution buffer
 D. Larutan enzim Taq DNA *polymerase*

8) Saat dilakukan analisis ukuran fragmen hasil amplifikasi PCR, penderita ovalositosis akan menghasilkan pita berukuran....
 A. 148 pb dan 175 pb
 B. 146 pb dan 180 pb
 C. 175 pb
 D. 180 pb

9) Salah satu aplikasi PCR ialah untuk mendeteksi parasit penyebab penyakit infeksi seperti....
 A. HPV
 B. *Plasmodium* spp
 C. *Mycobacterium tuberculosis*
 D. EBV

10) Salah satu komponen utama yang diperlukan dalam pemeriksaan PCR adalah larutan dNTP. Larutan dNTP merupakan campuran dari....
 A. dATP, dTTP, dCTP, dan deion
 B. dATP, primer, dCTP, dan Tris-HCl
 C. DNA template, primer, dan deion
 D. dATP, dTTP, dCTP, dan dGTP
Cocokkanlah jawaban Anda dengan Kunci Jawaban Tes 1 yang terdapat di bagian akhir Bab 8 ini. Hitunglah jawaban yang benar. Kemudian, gunakan rumus berikut untuk mengetahui tingkat penguasaan Anda terhadap materi Bab 1.

\[
\text{Tingkat penguasaan } = \frac{\text{Jumlah Jawaban yang Benar}}{\text{Jumlah Soal}} \times 100\%
\]

Arti tingkat penguasaan :

- 90 - 100% = baik sekali
- 80 - 89% = baik
- 70 - 79% = cukup
- < 70% = kurang

Apabila mencapai tingkat penguasaan 80% atau lebih, Anda dapat melanjutkan mempelajari bab 9. **Bagus!** Jika masih di bawah 80%, Anda harus mengulangi materi Topik 3, terutama bagian yang belum dikuasai.
Kunci Jawaban Tes

Tes 1
1. A
2. D
3. B
4. C
5. C
6. B
7. B
8. A
9. D
10. C

Tes 2
1. B
2. A
3. B
4. D
5. D
6. B
7. C
8. C
9. A
10. B

Tes 3
1. D
2. A
3. D
4. D
5. B
6. C
7. C
8. A
9. B
10. D
Glosarium

Amplifikasi : Proses penggandaan utas DNA.

Annealing : Proses penempelan primer pada genom untuk amplifikasi gen tertentu.

DNA Polimerase : Enzim yang mengkatalisis pemanjangan DNA baru pada garpu replikasi dengan cara penambahan nukleotida ke rantai yang sudah ada.

Ekstraksi DNA : Proses mendapatkan DNA utuh dari suatu jaringan makhluk hidup.

Elektroforesis : Teknik pemisahan molekul DNA berdasarkan ukurannya dengan menggunakan muatan listrik.

Enzim restriksi : Enzim yang digunakan untuk memotong DNA secara spesifik.

Gen : Satuan informasi genetik yang terdiri atas suatu urutan nukleotida spesifik dalam DNA (atau RNA, pada beberapa virus).

Hibridisasi DNA : Metode untuk menyeleksi sekuen DNA dengan menggunakan probe DNA untuk proses hibridisasi (pengcangkokan) rantai ganda DNA.

Karsinogenik : Agen kimiawi penyebab kanker.

Kloning : Suatu metode untuk menghasilkan keturunan yang dikehendaki sama persis dengan induknya.

Kodon : Suatu kelompok dari tiga rangkaian nukleotida berdekatan yang mengkode asam amino.

Kromosom : Molekul asam nukleat yang melakukan replikasi sendiri dan terdiri atas DNA dan protein serta dapat terlihat jelas ketika terjadi proses pembelahan.

Nukleotida : Blok penyusun asam nukleat, yang terdiri atas suatu gula berkarbon lima yang berikatan secara kovalen dengan suatu basa nitrogen dan sebuah gugus fosfat.

PCR (Polymerase Chain Reaction) : Teknik amplifikasi atau penggandaan gen target dengan menggunakan primer tertentu untuk proses inisiasi.

Primer : Untaian pendek DNA utas tunggal yang menginisiasi reaksi berantai penggandaan DNA.

Primer spesifik : Primer khusus yang dirancang untuk mengamplifikasi sekuen DNA suatu kelompok makhluk hidup.

Probe DNA : Suatu segmen asam nukleat yang disintesis secara kimiawi dan dilabel dengan radioaktif yang digunakan untuk
menemukan suatu gen yang diinginkan dengan cara membuat ikatan hidrogen dengan suatu urutan komplementer.

<table>
<thead>
<tr>
<th>Replikasi</th>
<th>Proses pengcopyan DNA induk untuk menghasilkan molekul DNA anakan yang mempunyai urutan nukleotida yang identik.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sekuen</td>
<td>Urutan basa nukleotida pada DNA.</td>
</tr>
<tr>
<td>Sekuensing DNA</td>
<td>Proses persejajaran basa nukleotida.</td>
</tr>
</tbody>
</table>
Kunci Jawaban Tes

Tes 1
1. A
2. D
3. B
4. C
5. C
6. B
7. B
8. A
9. D
10. C

Tes 2
1. B
2. A
3. B
4. D
5. D
6. B
7. C
8. C
9. A
10. B

Tes 3
1. D
2. A
3. D
4. D
5. B
6. C
7. C
8. A
9. B
10. D
Daftar Pustaka

Retnoningrum, D.S. 2010. Replication and Polymerase Chain Reaction. School of Pharmacy. ITB

BAB IX
TEKNIK IDENTIFIKASI ASAM NUKLEAT DAN PROTEIN

Dr. Betty Nurhayati, MSi.

PENDAHULUAN

Apakah Anda memiliki pengalaman melakukan identifikasi hasil isolasi asam nukleat (DNA atau RNA) dan protein? Sebagian dari Anda pernah melakukankannya. Tetapi, mungkin banyak di antara Anda yang belum pernah melakukan pemeriksaan ini, karena pada kenyataannya belum semua laboratorium klinik di fasilitas pelayanan kesehatan atau laboratorium penelitian mempunyai fasilitas laboratorium biologi molekuler. Bagi Anda yang sudah pernah, tugas identifikasi apa yang diminta: hasil isolasi atau hasil amplifikasi asam nukleat dari spesimen klinik (manusia atau kultur bakteri)? Tuliskan jawaban Anda di bawah ini

Untuk dapat mempelajari identifikasi asam nukleat dengan mudah, Anda perlu mempelajari kembali topik-topik terkait sebelumnya, karena pemeriksaan ini merupakan tahap akhir dari rangkaian kegiatan sebelumnya. Anda masih ingat tahapan apa saja yang sudah Anda pelajari? Ya, bagus. Tahapan identifikasi dimulai dari persiapan spesimen untuk memperoleh DNA atau RNA melalui teknik isolasi seperti yang sudah dijelaskan sebelumnya pada Bab 7.

Selanjutnya, setelah diperoleh hasil isolasi DNA atau RNA, pemeriksaan dilanjutkan dengan proses amplifikasi (penggandaan) sehingga diperoleh hasil amplifikasi (amplikon). Tahap akhir pemeriksaan yaitu dilakukan pemeriksaan identifikasi bertujuan untuk mendeteksi keberadaan atau konsentrasi DNA atau RNA pada spesimen yang diperiksa sesuai dengan permintaan dari klinis.

Ruang lingkup yang akan Anda pelajari dalam bab 9 ini adalah identifikasi asam nukleat dan protein baik secara kualitatif maupun kuantitatif. Setelah pembelajaran Anda lakukan, Anda diharapkan memiliki kemampuan untuk dapat menerapkan teknik identifikasi yang tepat sesuai tujuan pemeriksaan. Silakan Anda cermati topik- topik berikut ini!

Selamat belajar. Semoga Anda berhasil mencapai kompetensi yang diharapkan
Topik 1
Teknik Identifikasi Asam Nukleat

Silahkan anda perhatikan dan simak kembali modul sebelumnya yaitu pada Gambar 7.2 (Tahapan analisis biomolekuler menggunakan teknik PCR).

Setelah proses isolasi asam nukleat (DNA atau RNA) selesai atau setelah proses hasil amplifikasi selesai Anda lakukan, pemeriksaan dilanjutkan dengan analisis hasil isolasi (isolat) atau hasil amplifikasi DNA atau RNA tersebut. Untuk menguji isolat DNA dan RNA dapat dilakukan secara kuantitatif dan kualitatif.

Anda dapat melakukan pengukuran isolat DNA dan RNA secara kuantitatif dengan menggunakan spektrofotometer UV. Pada uji kuantitatif DNA atau RNA dengan menggunakan spektrofotometer UV yang dilakukan pada panjang gelombang sinar UV 260 nm, akan menangkap molekul DNA atau RNA sehingga dapat terukur nilai absorbansinya. Dengan cara tersebut dapat diketahui konsentrasi dan kemurnian DNA.

Di samping itu Anda dapat melakukan pengukuran isolat DNA dan RNA secara kualitatif dengan teknik elektroforesis menggunakan gel agarosa yang dapat mengukur kualitas kemurnian DNA atau RNA. Secara kasar gambaran yang diperoleh dari elektroforesis pada gel agarosa tersebut juga dapat digunakan untuk menaksir konsentrasi isolat DNA.

Berikut ini mari kita simak bersama penjelasan yang lebih rinci tentang analisis identifikasi isolat DNA atau RNA baik secara kualitatif maupun kuantitatif.

1. Analisis Asam Nukleat Secara Kuantitatif

Untuk mengetahui penjelasan lebih rinci tentang analisis asam nukleat secara kuantitatif dapat dilakukan dengan teknik identifikasi sebagai berikut.

Cara termudah dan akurat untuk menentukan konsentrasi DNA adalah melalui analisis spektrofotometri karena basa nitrogen dapat menyerap sinar UV, semakin tinggi konsentrasi DNA atau RNA, maka sinar UV akan semakin menyerap.

Peralatan yang dibutuhkan untuk metode absorbansi adalah spektrofotometer yang dilengkapi dengan lampu UV, kuvet (tabung kaca atau plastik) transparan UV (tergantung jenis instrumen yang digunakan) dan larutan asam nukleat yang telah dimurnikan.

Pembacaan absorbansi dilakukan pada 260 nm yang mana DNA menyerap cahaya yang paling kuat, dan nilai yang dihasilkan memungkinkan seseorang untuk memperkirakan konsentrasi larutan. Untuk memastikan bahwa jumlahnya cukup berguna, maka membaca pada 260 nm harus berada dalam jangkauan linier instrumen (umumnya nilai absorbansi antara 0,1 sampai 1,0).

DNA untai tunggal mempunyai koefisien absorbsi 0,027; DNA untai ganda 0,02 dan RNA 0,025 µg per mL per cm pada panjang gelombang 260 nm. Kontaminan protein atau fenol akan menyerap cahaya pada λ 280 nm. Kemurnian DNA dapat dukuk dengan menghitung nilai absorbansi λ 260 nm dibagi dengan nilai absorbansi λ 280 (Å260/Å280), dan nilai kemurnian DNA berkisar antara 1,8-1,9; sedangkan sampel RNA yang murni sebesar
1,9-2,0. Apabila rasio tersebut dibawah 1,8 berarti ada ketidakmurnian yang signifikan yang masih tertinggal di dalam sampel. Adapun hubungan antara konsentrasi DNA, RNA, protein dengan absorbivitas dapat disimak pada Tabel 9.1 berikut ini, sedangkan ilustrasi pengukuran asam nukleat secara kuantitatif menggunakan spektrofotometer dapat disimak pada Gambar 9.1.

Tabel 9.1 Hubungan antara Konsentrasi DNA, RNA, Protein dengan Absorpsivitas

<table>
<thead>
<tr>
<th>Sample</th>
<th>Absorbance value</th>
<th>Quantity (approximate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double-stranded DNA</td>
<td>1 at 260 nm</td>
<td>50 μg/mL</td>
</tr>
<tr>
<td>Pure single-stranded DNA</td>
<td>1 at 260 nm</td>
<td>33 μg/mL</td>
</tr>
<tr>
<td>Pure RNA</td>
<td>1 at 260 nm</td>
<td>40 μg/mL</td>
</tr>
<tr>
<td>Pure protein (vary in general) Antibodies¹</td>
<td>1 at 280 nm 1.2-1.35</td>
<td>1 mg/mL</td>
</tr>
</tbody>
</table>

Gambar 9.1 Prinsip pengukuran DNA secara kuantitatif

Pengujian sampel (isolat) DNA atau RNA secara kuantitatif dilakukan dengan langkah sebagai berikut. Disiapkan sampel DNA atau RNA hasil isolasi sebanyak 5 μL dan diteteskan pada spektrofotometer UV-Vis nanodrop 2000 (Gambar 9.2). Dibaca grafik kemurnian dan konsentrasi DNA atau RNA. DNA dan RNA murni dapat menyerap cahaya ultraviolet karena keberadaan basa-basa purin dan pirimidin (Pambudiono, 2016). Untuk mengukur konsentrasi asam nukleat digunakan rumus sebagai berikut:

\[[\text{dsDNA}] = \text{Å}260 \times 50 \times \text{faktor pengenceran} \]

Keterangan:
Å260 = Nilai absorbansi pada λ 260 nm
50 = larutan dengan nilai absorbansi 1,0 sebanding dengan 50 µg untai ganda DNA per mL.

\[
[ssDNA] = \bar{A}_{260} \times 33 \times \text{faktor pengenceran}
\]

Keterangan:
\(\bar{A}_{260}\) = Nilai absorbansi pada \(\lambda\) 260 nm
33 = larutan dengan nilai absorbansi 1,0 sebanding dengan 33 µg untai tunggal DNA

\[
[ssRNA] = \bar{A}_{260} \times 40 \times \text{faktor pengenceran}
\]

Keterangan:
\(\bar{A}_{260}\) = Nilai absorbansi pada \(\lambda\) 260 nm
40 = larutan dengan nilai absorbansi 1,0 sebanding dengan 40 µg RNA per mL.

Spectrophotometric Method

Gambar 9.2 Alat pengukuran DNA metode spektrofotometri

2. **Analisis Asam Nukleat Secara Kualitatif**

Untuk melakukan identifikasi, pemisahan dan purifikasi fragmen DNA atau RNA secara kualitatif digunakan metode standar yaitu metode elektroforesis. Elektroforesis merupakan teknik pemisahan suatu molekul dalam suatu campuran di bawah pengaruh medan listrik. Molekul terlarut dalam medan listrik bergerak atau migrasi dengan kecepatan yang ditentukan oleh rasio muatan dan massa. Sebagai contoh, jika dua molekul mempunyai masa dan bentuk yang sama, molekul dengan muatan lebih besar akan bergerak lebih cepat kearah elektrode. Elektroforesis melalui gel agarosa atau poliakrilamid merupakan standar untuk pemisahan, identifikasi dan pemurnian fragmen DNA. Selain itu elektroforesis gel poliakrilamid dapat juga digunakan untuk pemisahan, identifikasi dan pemurnian protein.
Teknik ini merupakan teknik sederhana, cepat dan dapat memisahkan molekul yang diinginkan dari matriksnya yang tidak dapat dilakukan oleh prosedur lainnya seperti sentrifugasi gradient. Berikut ini akan dijelaskan beberapa jenis elektroforesis untuk kepentingan analisis isolat DNA atau RNA tersebut.

a. **Elektroforesis Gel Agarose**

Langkah pengujian sampel DNA secara kualitatif adalah dengan metode elektroforesis, umumnya digunakan elektroforesis gel agarose. Elektroforesis adalah proses perpindahan molekul bermuatan melalui suatu media di dalam medan listrik. Elektroforesis menggunakan gel agarose merupakan metode standar yang digunakan untuk memisahkan, mengidentifikasi dan memurnikan asam nukleat.

Elektroforesis adalah suatu teknik pemisahan molekul seluler berdasarkan atas ukurannya, dengan menggunakan medan listrik yang dialirkan pada suatu medium yang mengandung sampel yang akan dipisahkan. Teknik ini dapat digunakan dengan memanfaatkan muatan listrik yang ada pada makromolekul, misalnya DNA yang bermuatan negatif. Jika molekul yang bermuatan negatif dilewatkan melalui suatu medium, misalnya gel agarose, kemudian dialiri arus listrik dari satu kutub ke kutub yang berlawanan muatannya, maka molekul tersebut akan bergerak dari kutub negatif ke kutub positif.

Kecepatan laju migrasi suatu molekul dipengaruhi oleh beberapa faktor, yaitu: arus listrik, semakin besar arus listrik yang digunakan maka laju migrasi akan semakin cepat; ukuran molekul, semakin kecil ukuran suatu molekul maka laju migrasinya akan semakin cepat; bentuk molekul, molekul yang memiliki rasio axial tinggi memiliki laju migrasi yang lebih lama daripada molekul berbentuk spherical; konsentrasi gel, semakin rendah konsentrasi gel maka laju migrasi semakin cepat karena gesekan molekulnya berkurang; adanya pewarna Etidium Bromida di dalam gel dapat menyebabkan pengurangan kecepatan laju migrasi; dan komposisi larutan buffer, larutan buffer berkekuatan ion tinggi akan meningkatkan panas sehingga aliran listrik dan laju migrasi molekul pun meningkat.

![Gambar 9.3 Susunan Dasar Elektroforesis](image-url)
Persentase agarose yang digunakan tergantung dari ukuran fragmen yang akan diperiksa. Konsentrasi gel agarose dilihat dari persentase agarose terhadap volume bufer (w/v), normalnya konsentrasi gel agarose berada pada range 0,2% - 3%. Gel agarose biasa digunakan untuk memisahkan molekul DNA yang berukuran ~100 bp hingga ~20 kbp di dalam medan magnet secara tidak langsung. Semakin rendah konsentrasi gel agarose, maka semakin cepat migrasi fragmen DNA. Jadi, jika tujuan kita adalah untuk memisahkan fragmen DNA berukuran besar, maka perlu dibuat gel agarose dengan konsentrasi rendah. Sebaliknya, jika fragmen DNA yang hendak dipisahkan berukuran kecil, maka perlu dibuat gel agarose dengan konsentrasi tinggi.

Tabel 9.2 Konsentrasi gel agarose untuk berbagai range ukuran DNA

<table>
<thead>
<tr>
<th>KONSENTRASI AGAROSE (%)</th>
<th>RANGE UKURAN DNA (BP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,2</td>
<td>5000-40000</td>
</tr>
<tr>
<td>0,4</td>
<td>5000-30000</td>
</tr>
<tr>
<td>0,6</td>
<td>3000-10000</td>
</tr>
<tr>
<td>0,8</td>
<td>1000-7000</td>
</tr>
<tr>
<td>1</td>
<td>500-5000</td>
</tr>
<tr>
<td>1,5</td>
<td>300-3000</td>
</tr>
<tr>
<td>2</td>
<td>200-1500</td>
</tr>
<tr>
<td>3</td>
<td>100-1000</td>
</tr>
</tbody>
</table>

Berikut ini akan dijelaskan secara terperinci mengenai tujuan, alat dan bahan, langkah kerja serta pewarnaan DNA hasil elektroforesis gel agarose:
1. Tujuan Elektroforesis Gel Agarosa
 • Pada hasil isolasi (isolat) asam nukleat, pemeriksaan gel agarosa bertujuan untuk identifikasi kemurnian dan perkiraan konsentrasi DNA atau RNA.
 • Pada produk PCR, pemeriksaan gel agarosa bertujuan untuk identifikasi produk PCR amplikon) dibandingkan dengan DNA ladder atau DNA kontrol positif; dokumentasi uji PCR atau memurnikan produk PCR untuk identifikasi lebih lanjut (misalnya sekuensing) pada hasil produk PCR (amplikon).

2. Alat dan Bahan yang Diperlukan
 Alat:
 - Seperangkat alat elektroforesis,
 - Power supply
 - Mikropipet 0,5-10 μL beserta tipnya
 - Kertas parafilm
 - UV transilluminator
 - Kaca mata UV
 - Gelas kimia 250 mL
 - Gelas ukur 100 mL
 - Labu ukur 100 mL
 - Labu erlenmeyer 50 mL
 - Pipet volume 10 mL
 - Pipet ukur
 - Ball pipet
 - Kompor listrik
 - Sarung tangan
 - Selotip

Gambar 9.4 Peralatan Elektroforesis Gel Agarose
Bahan:
- Isolat atau DNA/RNA produk PCR
- DNA marker
- Agarose
- Larutan buffer TAE 50x (242 g tris-base; 57,1 g asam asetat glasial; 100 mL EDTA 0,5M pH8; dilarutkan dalam akuades hingga 1000 mL)
- Aquadest
- Etidium Bromida
- Loading dye 6x (0,25% bromophenol blue; 0,25% xylene cyalol; 15% ficoll tipe 4000; EDTA 120 mM)

3. Pembuatan Gel Agarose 2%
Untuk melakukan pembuatan Gel Agarosa yang penting adalah sesuai dengan SOP, sebagai berikut:
 a. Buat 250 mL larutan buffer TAE 1x dengan cara mencampurkan 5 ml TAE 50x ke dalam 245 ml Aquadest.
 b. Buat gel agarose 2% dengan cara menimbang 0,5 g gel agarose kemudian larutkan dalam 25 ml buffer TAE 1x dan didihkan hingga larut sempurna.
 c. Siapkan baki elektroforesis, lekatkan selotip di tiap ujung baki elektroforesis. (Pastikan bahwa selotip melekat kuat dan tidak ada lubang pada masing-masing ujung baki).
 d. Pasang sisir elektroforesis di salah satu ujung baki dengan posisi hampir menyentuh dasar baki.
 e. Periksalah suhu larutan agarose dengan cara menempelkan erlenmeyer ke tangan, jika suhunya sudah turun hingga sekitar 60°C, tuangkan larutan agarose ke dalam baki elektroforesis, biarkan hingga larutan berubah menjadi gel yang padat.
Gambar 9.5 Prosedur Pembuatan Gel Agarose
4. Elektroforesis
 a. Masukkan baki yang berisi gel agarose ke dalam tangki elektroforesis yang telah diisi dengan sisa larutan bufer TAE 1x. (Pastikan bahwa gel agarose terendam seluruhnya dalam TAE).
 b. Siapkan sekitar 5 cm kertas parafilm di dekat tangki elektroforesis.
 c. Pipet sebanyak 6 µL sampel DNA, 6 µL DNA marker, dan 6 µL aquades (kontrol negatif), kemudian masing-masing tambahkan 1 µL loading dye 6x. Homogenkan di atas kertas parafilm, kemudian masukkan ke dalam sumuran gel agarose.
 d. Hubungkan kabel dari sumber arus ke tangki elektroforesis (pastikan bahwa kabel yang tersambung ke kutub negatif berada di dekat sumuran, sedang kabel yang tersambung ke kutub positif berada jauh dari sumuran; jika tidak demikian, ubahlah posisi baki/gel ke arah sebaliknya).
 e. Nyalakan sumber arus, aturlah voltase dan waktu running hingga diperoleh angka 150 volt dan 30 menit.
 f. Jalankan elektroforesis (lakukan running) dengan cara menekan tombol run pada sumber arus.
 g. Elektroforesis akan berhenti apabila waktu yang ditetapkan sudah habis, yang ditandai oleh adanya bunyi alarm. Matikan sumber arus dan angkatlah baik dari tangki elektroforesis. (Ilustrasi running elektroforesis dapat Anda lihat pada Gambar 9.6)
5. Pewarnaan DNA
 a. Setelah proses elektroforesis selesai, gel agarose direndam dalam larutan Etidium Bromida 0,01% selama 10 menit.
 b. Kemudian destaining di dalam 150 mL aquadest selama 10 menit.
 c. Letakkan gel agarose yang telah diwarnai oleh Etidium Bromida diatas UV transilluminator.

Gambar 9.6 Prosedur Running Elektroforesis
d. Nyalakan UV transilluminator, amati pita-pita DNA yang tervisualisasi (Gambar 9.7).

Gambar 9.7 Hasil Elektroforesis Gel Agarose Setelah Diwarnai oleh Etidium Bromida

Teknik elektroforesis DNA saat ini semakin berkembang. Analisis molekul DNA tidak hanya dapat dilakukan dengan prinsip elektroforesis linear. Beberapa teknik baru mulai digunakan, misalnya teknik pulse field gel electrophoresis (PFGE), orthogonal field alternation gel electrophoresis (OFAGE), dan transverse alternating field electrophoresis (TAFE). Di samping itu, untuk keperluan tertentu, misalnya untuk penentuan urutan urutan DNA (DNA sequencing), elektroforesis DNA dilakukan dengan menggunakan gel yang berbeda yaitu gel poliakrilimad. Berikut ini akan dibahas lebih lanjut mengenai elektroforesis menggunakan gel poliakrilimad.

b. Elektroforesis Gel Poliakrilimad

Selain menggunakan gel agarose, analisis kualitatif DNA juga dapat dilakukan dengan menggunakan gel akrilimad. Gel akrilimad sering dimanfaatkan untuk memisahkan fragmen DNA kecil, biasanya berukuran kurang dari 100 base pair (bp). Gel ini biasanya menggunakan akrilimad berkonsentrasi rendah (< 6%) dan mengandung agen denaturing non ionic (urea 6M). Agen denaturing ini berperanan untuk mencegah pembentukan formasi struktur sekunder oligonukleotida sehingga memungkinkan penentuan massa molekul yang akurat. (Afiono, 2009).

Akrilimad merupakan suatu monomer, yang jika ada radikal bebas, biasanya diberikan oleh ammonium persulfat dan distabilkan oleh TEMED, terjadi raksi berantai sehingga monomer terpolimerisasi menjadi rantai panjang. Jika dalam reaksi itu terdapat bisakrilimad, reaksi menjadi bersambung melintang menjadi gel yang pori-porinya ditentukan oleh panjang rantai dan jumlah sambungan silang (Gambar 9.8). Panjang rantai ini ditentukan
oleh konsentrasi poliakrilamid dalam reaksi ini (3,5%-20%) dan satu molekul sambungan
silang terjadi pada setiap 29 monomer akrilamid. Rentang pemisahan yang efektif pada gel
poliakrilamid dengan berbagai konsentrasi dapat dilihat pada tabel 8.

Gel poliakrilamid dibuat dengan cara menuangkan gel poliakrilamid antar dua lempeng
kaca yang dipisahkan dengan pembatas dengan ketebalan tertentu. Gel poliakrilamid dapat
berukuran 5 cm sampai 50 cm panjangnya tergantung pada keperluannya dan dilakukan
elektroforesis dengan cara vertikal. Sistem ini menunjukkan tiga keunggulan agarosa: (1)
kekuatan pemisahannya sangat besar sehingga dapat memisahkan satu pasang basa dalam
500 pasang basa. (2) Sistem ini dapat menampung sampel lebih besar daripada agarosa. (3)
DNA yang diperoleh kembali dari gel poliakrilamid sangat murni sehingga dapat digunakan
untuk keperluan percobaan mikroinjeksi embrio tikus. (Soedjadi, 2008).

![Gambar 9.8 Pembentukan gel poliakrilamid. Jaringan tiga dimensi terbentuk oleh ko-
polimerisasi monomer teraktivasi dengan penghubung dari bis akrilamid (diadaptasi
dari Sambrook et al., 1989)](image_url)

<table>
<thead>
<tr>
<th>Akrilamid (%b/v)</th>
<th>Rentang Pemisahan (pasang basa)</th>
<th>Sinol Silen Biru brom fenol</th>
<th>Biru bromfenol</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,5</td>
<td>1000-2000</td>
<td>600</td>
<td>100</td>
</tr>
<tr>
<td>5,0</td>
<td>80-500</td>
<td>260</td>
<td>65</td>
</tr>
<tr>
<td>8,0</td>
<td>60-400</td>
<td>160</td>
<td>45</td>
</tr>
<tr>
<td>12,0</td>
<td>40-200</td>
<td>70</td>
<td>20</td>
</tr>
</tbody>
</table>
Bis akrilamid diberikan dalam konsentrasi 1/30 konsentrasi akrilamid. Angka yang tertera merupakan ukuran pasang basa dari fragmen DNA untai ganda yang migrasi bersama pewarna. Pewarnaan DNA yang terdapat di dalam gel akrilamid didasarkan pada metode yang dikembangkan oleh Bassam et al., (1991). Gen hasil elektroforesis difiksasi dengan larutan asam asetat 10% (b/v) sebanyak dua (2) kali masing-masing selama 10 menit. Gel dicuci tiga (3) kali dengan aqua dan masing-masing selama 2 menit, kemudian direndam dalam larutan pewarna (AgNO3 0,1% b/v), formaldehid 0,5% (v/v) selama 30 menit. Setelah gel dicuci kembali dengan aquades sebanyak 2 kali, gel direndam dalam larutan developing (Na2CO3 3% (b/v), formaldehid 0,5% (v/v), Natrium tiosulfat 0,002 mg/mL) pada temperature 4oC sampai pita-pita DNA muncul. Tahap akhir dari pewarnaan adalah fiksasi dengan menggunakan asam asetat 10% (b/v) dan pencucian kembali dengan aqua dm. Gel kemudian dikeringkan di antara 2 plastik selofan.

c. **Memvisualisasikan DNA Hasil Elektroforesis**

Setelah elektroforesis selesai, ada beberapa metode pewarnaan yang dapat Anda gunakan untuk memvisualisasikan fragmen DNA yang terseparasi di dalam gel agar dapat diamati oleh mata. Berikut adalah penjelasan beberapa prosedur pewarnaan untuk memvisualisasikan fragmen DNA yang terseparasi di dalam gel agar.

1) **Pewarnaan Etidium bromide (EtBr)**

Zat warna yang umum digunakan untuk pewarnaan DNA hasil elektroforesis gel agarose adalah Etidium Bromida. Pewarna Etidium Bromide (EtBr) digunakan untuk alat identifikasi dan mengukur semi-kualitatif fragmen DNA yang terseparasi dalam gel. EtBr ini akan terikat (interkalasi) diantara dua untai ganda DNA, sehingga band/pita DNA dalam gel agarose akan berpendar saat diamati dengan sinar UV karena pewarna ini mengandung zat fluorescence.

Pewarnaan DNA menggunakan EtBr dapat dilakukan dengan beberapa cara: 1) Larutan EtBr ditambahkan pada setiap sampel yang akan dimasukkan ke sumuran gel; 2) Larutan EtBr dicampurkan ke gel agarose sebelum gel dicetak dalam cetakan gel dan 3) Larutan EtBr digunakan untuk merendam gel agarose setelah elektroforesis. DNA hasil pewarnaan menggunakan Etidium Bromida kemudian divisualisasikan menggunakan UV transilluminator, maka akan tampak citra berupa pita-pita pada gel.

2) Pewarnaan Perak (SS)

Pewarnaan perak adalah metode yang sangat sensitif untuk visualisasi asam nukleat dan protein hasil elektroforesis gel poliakrilamid. Asam nukleat dan protein mengikat ion perak, membentuk butiran logam perak yang tidak larut. Perak yang terdeposisi terlihat sebagai pita coklat tua pada gel. Tahapan dalam pewarnaan perak meliputi: i) fiksasi untuk menyingkirkan senyawa yang mengganggu, ii) sensitasi dan pembilasan untuk meningkatkan sensitivitas dan kontras pewarnaan, iii) impregnasi dengan larutan perak nitrat atau larutan kompleks perak-amonia, iv) pembilasan dan pengembangan untuk membangun citra logam perak, dan v) berhenti dan pembilasan untuk menghilangkan kelebihan background maupun kelebihan ion perak (Chevallet et al., 2006).

Gambar 9.9 Pola Ekspresi TDFs dari cDNA AFLP hasil elektroforesis gel poliakrilamid setelah dilakukan pewarnaan silver
Latihan

1) Jelaskan analisis asam nukleat secara kuantitatif menggunakan spektrofotometer!
2) Jelaskan analisis asam nukleat menggunakan elektroforesis gel agarose dan poliakrilamid!

Petunjuk Jawaban Latihan

Untuk membantu Anda dalam mengerjakan soal latihan, silakan pelajari kembali materi tentang:
1) Teknik analisis asam nukleat secara kuantitatif.
2) Teknik analisis asam nukleat secara kualitatif menggunakan elektroforesis gel agarose dan poliakrilamid.

Ringkasan

1. Analisis asam nukleat secara kuantitatif dapat dilakukan melalui analisis spektrofotometri. Basa nitrogen dapat menyerap sinar UV, semakin tinggi konsentrasinya, maka sinar UV akan semakin menyerap. Pembacaan absorbansi dilakukan pada 260 nm. Kontaminan protein atau fenol akan menyerap cahaya pada λ 280 nm. Kemurnian DNA dapat dikukur dengan menghitung nilai absorbansi λ 260 dibagi dengan nilai absorbansi λ 280 ($\frac{A_{260}}{A_{280}}$), dan nilai kemurnian DNA berkisar antara 1,8-1,9; sedangkan sampel RNA yang murni sebesar 1,9-2,0. Apabila rasio tersebut dibawah 1,8 berarti ada ketidakmurnian yang signifikan yang masih tertinggal di dalam sampel.

2. Metode standar yang digunakan untuk identifikasi, pemisahan dan purifikasi fragmen DNA adalah dengan menggunakan metode elektroforesis. Elektroforesis adalah suatu teknik pemisahan molekul seluler berdasarkan atas ukurannya, dengan menggunakan medan listrik yang dialirkan pada suatu medium yang mengandung sampel yang akan dipisahkan. Elektroforesis DNA atau RNA dapat menggunakan medium gel agarose maupun gel poliakrilamid, namun yang lebih umum digunakan untuk elektroforesis DNA ialah gel agarose.

3. Kecepatan laju migrasi suatu molekul di dalam elektroforesis dipengaruhi oleh beberapa faktor, yaitu: arus listrik, ukuran molekul, bentuk molekul, konsentrasi gel, adanya pewarna Etidium Bromida di dalam gel, dan komposisi larutan buffer.

4. Gel akrilamid sering dimanfaatkan untuk memisahkan fragmen DNA kecil, biasanya berurutan kurang dari 100 base pair (bp).

5. Setelah elektroforesis selesai, perlu dilakukan pewarnaan agar band DNA yang terbentuk dapat diamati. Untuk hasil elektroforesis gel agarose umumnya dilakukan pewarnaan menggunakan Etidium Bromida, sedangkan untuk hasil elektroforesis gel poliakrilamid dilakukan pewarnaan menggunakan perak (silver staining).
Tes 1

Kerjakan tes berikut dengan memilih jawaban yang paling tepat, dengan memberi tanda silang (X) pada huruf A, B, C atau D di depan pilihan jawaban.

1) Analisis DNA dapat dilakukan secara spektrofotometri karena DNA mampu menyerap sinar UV. Bagian dari DNA yang mampu menyerap sinar UV adalah....
 A. gugus fosfat
 B. basa nitrogen
 C. gula pentosa
 D. ikatan hidrogen

2) Faktor yang mengkontaminasi kemurnian DNA sehingga ikut terbaca pada λ_{280} nm adalah....
 A. glukosa
 B. protein dan lemak
 C. lemak dan etanol
 D. protein dan fenol

3) Faktor-faktor yang mempengaruhi kecepatan laju migrasi suatu molekul di dalam elektroforesis adalah sebagai berikut, kecuali....
 A. tekanan
 B. arus listrik
 C. ukuran molekul
 D. konsentrasi gel agarose

4) Berikut ini pernyataan yang benar mengenai hubungan faktor-faktor pengaruh dengan kecepatan laju migrasi suatu molekul di dalam elektroforesis, kecuali....
 A. semakin rendah konsentrasi gel agarose, maka semakin cepat migrasi fragmen DNA
 B. semakin kecil ukuran suatu molekul maka laju migrasinya akan semakin cepat
 C. larutan buffer berkekuatan ion tinggi akan menurunkan laju migrasi molekul
 D. larutan buffer berkekuatan ion tinggi akan meningkatkan laju migrasi molekul

5) Pada proses pewarnaan DNA, Etidium Bromida akan menyisip diantara untai ganda DNA sehingga menghasilkan fluorensensi yang dapat diamati menggunakan sinar UV. Ikatan yang terjadi pada proses tersebut dinamakan....
 A. hidrogen
 B. interkalasi
 C. elektrostatik
 D. ion
6) Terdapat hubungan antara konsentrasi DNA, RNA dan Protein dengan absorpsivitas. Untuk larutan RNA dengan nilai absorbansi 1,0 sebanding dengan:
A. 20 µg untai tunggal DNA
B. 33 µg untai tunggal DNA
C. 40 µg untai tunggal DNA
D. 50 µg untai tunggal DNA

7) Metode pewarnaan yang sangat sensitif untuk visualisasi asam nukleat dan protein hasil elektroforesis gel poliakrilamid adalah....
A. Pewarnaan perak
B. Pewarnaan Etidium Bromida
C. Pewarnaan Sybr Green 1
D. Pewarnaan Methylene Blue

8) Gel akrilamid sering dimanfaatkan untuk memisahkan fragmen DNA kecil, biasanya berukuran.... kurang dari berukuran 1000 bp, dibutuhkan gel agarose dengan konsentrasi....
A. 200 – 500 bp
B. < 100 bp
C. 250 bp
D. < 1000 bp

9) Kemurnian DNA dapat dukur dengan menghitung nilai absorbansi \(\lambda 260 \) nm dibagi dengan nilai absorbansi \(\lambda 280 \) (\(\frac{\lambda 260}{\lambda 280} \)). Nilai kemurnian DNA berkisar antara....
A. 1,8-1,9
B. 1,9-2,0
C. <1,8
D. 1,5-1,7

10) Tahapan pewarnaan hasil elektroforesis gel poliakrilamid dengan pewarnaan perak ialah sebagai berikut, kecuali:
A. fiksasi
B. sensitasi dan pembilasan
C. rehidrasi
D. impregnasi

Tingkat penguasaan = \(\frac{\text{Jumlah Jawaban yang Benar}}{\text{JumlahSoal}} \times 100\% \)

Arti tingkat penguasaan :
- 90 - 100% = baik sekali
- 80 - 89% = baik
- 70 - 79% = cukup
- < 70% = kurang

Apabila mencapai tingkat penguasaan 80% atau lebih, Anda dapat mempelajari Topik 2. Bagus! Jika masih di bawah 80%, Anda harus mengulangi materi Topik1, terutama bagian yang belum dikuasai.
Topik 2
Teknik Identifikasi Protein

Sub topik selanjutnya yang akan Anda pelajari adalah tentang analisis protein secara kuantitatif dan kualitatif. Setelah Anda mempelajari materi ini tentang teknik identifikasi protein, Anda diharapkan memiliki kemampuan untuk membandingkan penggunaan metode/teknik identifikasi protein.

Protein hasil isolasi dengan menggunakan buffer ekstrak dan reagen lain perlu diukur kadar protein yang terkandung di dalamnya. Pengukuran kadar protein dilakukan dengan tujuan untuk mengetahui kandungan protein yang terdapat dalam sampel yang diisolasi. Selain itu pengukuran dilakukan juga dengan tujuan untuk mengecek proses isolasi yang dilakukan apakah berhasil atau tidak.

Selanjutnya silakan Anda cermati materi tentang metode atau teknik identifikasi protein.

1. Analisis Protein Secara Kuantitatif

Analisis protein secara kuantitatif terdiri dari metode Kjeldahl, metode titrasi formol, metode spektrofotometri visible (Biuret), metode Lowry, metode BCA assay, metode Bradford, dan metode spektrofotometri UV. Pada topik ini, akan dibahas beberapa metode analisis protein tersebut di atas.

Metode Lowry merupakan pengembangan dari metode Biuret. Reaksi yang terlibat adalah kompleks Cu(II)-protein akan terbentuk sebagaimana metode Biuret, yang dalam suasana alkalis Cu(II) akan tereduksi menjadi Cu(I). Ion Cu⁺ kemudian akan mereduksi reagen Folin-Ciocalteu, kompleks phosphomolibbdat-phosphotungstat (phosphomolybdatungstat), menghasilkan hetero-polymolybdenum blue akibat reaksi oksidasi gugus aromatik (rantai samping asam amino) terkatalis Cu, yang memberikan warna biru intensif yang dapat dideteksi secara kolorimetri. Kekuatan warna biru terutama bergantung pada kandungan residu tryptophan dan tyrosine-nya. Keuntungan metode Lowry adalah lebih sensitif (100 kali) daripada metode Biuret sehingga memerlukan sampel protein yang lebih sedikit. Batas deteksiya berkisar pada konsentrasi 0.01 mg/mL. Namun, metode Lowry banyak interferensinya akibat kesensitifannya (Sudarmanto, 2008).

Gambar 9.12 Reaksi pada Metode Bradford

Alternatif berikutnya adalah metode BCA assay yang mengandalkan dua tahapan reaksi. Pertama, ikatan peptida pada protein akan mereduksi ion Cu²⁺ dari CuSO₄ menjadi Cu⁺ (temperatur dependent). Jumlah Cu²⁺ tereduksi akan proporsional terhadap jumlah protein yang ada dalam sampel. Selanjutnya, dua molekul bicinehoninic acid akan membentuk chelate dengan masing-masing ion Cu²⁺, membentuk kompleks berwarna ungu yang menyerap secara maksimal pada 562 nm.

STEP 1.

\[
\text{Protein} + \text{Cu}^{2+} + \text{OH}^- \rightarrow \text{Cu}^{+} \]

STEP 2.

\[
\text{Cu}^{+} + 2 \text{BCA} \rightarrow \text{BCA-Cu}^{+} \text{Complex} \]

Gambar 9.13 Reaksi pada Metode BCA
2. Analisis Protein Secara Kualitatif

Pemeriksaan protein umumnya berdasarkan reaksi warna (secara kualitatif). Reaksi ini adalah berdasarkan adanya ikatan peptida maupun adanya sifat-sifat tertentu dari asam amino yang dikandungnya. Pemeriksaan protein secara kualitatif yang umum digunakan diantaranya uji Biuret, uji Ninhidrin, uji Xantoprotein, uji Sulfur, dan uji Neuman. Selain itu, analisis kualitatif protein juga dapat menggunakan kromatografi ataupun elektroforesis. Pada materi ini akan dibahas lebih dalam mengenai teknik identifikasi protein dengan metode elektroforesis menggunakan Polyacrilamid Gel Electrophoreis (SDS-PAGE)

a. Konsep SDS-PAGE

Elektroforesis protein pada dasarnya dilakukan dengan prinsip serupa seperti yang digunakan dalam elektroforesis DNA, tetapi dengan menggunakan gel poliakrilamid. Seringkali dalam pembuatan gel akrilamid ditambahkan sodium dodecyl sulphate (SDS) yang merupakan senyawa untuk mendisosiasi protein menjadi subunitnya. Metode elektroforesis yang demikian disebut SDS-PAGE (sodium dodecyl sulphate polyacrylamid gel electrophoresis).

Polyacrilamide Gel Electrophoreis (SDS-PAGE) adalah teknik untuk memisahkan rantai polipeptida pada protein berdasarkan kemampuannya untuk bergerak dalam arus listrik, yang merupakan fungsi dari panjang rantai polipeptida atau berat molekulnya. Hal ini dicapai dengan menambahkan deterjen SDS dan pemanasan untuk merusak struktur tiga dimensi pada protein dengan terpecahnya ikatan disulfide yang selanjutnya direduksi menjadi gugus sulfhidril. SDS akan membentuk kompleks dengan protein dan kompleks ini bermuatan negatif karena gugus-gugus anionic dari SDS.

SDS adalah detergen anionik yang dapat melapisi protein, sebagian besar sebanding dengan berat molekulnya, dan memberikan muatan listrik negatif pada semua protein dalam sampel. Protein glikosilasi mungkin tidak bermigrasi, karena diharapkan migrasi protein lebih didasarkan pada berat molekul dan massa rantai polipeptidanya, bukan gula yang melekat. SDS berfungsi untuk mendenaturasi protein karena SDS bersifat sebagai deterjen yang mengakibatkan ikatan dalam protein terputus membentuk protein yang dapat terelusi dalam gel begitu juga mercaptoetanol. SDS dapat mengganggu konformasi spesifik protein dengan cara melarutkan molekul hidrofobik yang ada di dalam struktur tersier polipeptida. SDS mengubah semua molekul protein kembali ke struktur primernya (struktur linear) dengan cara meregangkan gugus utama polipeptida. Selain itu, SDS juga menyelubungi setiap molekul protein dengan muatan negatif.

Gel poliakrilamid dibentuk sebagai silinder dalam tabung atau sebagai lembaran dalam lempengan kaca. Dalam perangkat elektroforesis, gel diletakkan diantara dua buffer chamber sebagai sarana untuk menghubungkan kutub negatif dan kutub positif. Orientasi posisi gel dapat secara vertikal dan horizontal atau disebut sebagai submarine.

positif yang diperoleh dari penangkapan proton. Protein yang tidak bermuatan tidak dapat bergerak pada medan listrik.

Hampir semua protein mempunyai pl kurang dari 8,0. Oleh karena itu, pH bufer elektroforesis berkisar 8 – 9 yang akan menyebabkan sebagian besar protein bermuatan negatif yang akan bergerak ke anoda.

Elektroforesis memerlukan media penyangga sebagai tempat bermigrasinya molekul biologi. Media penyangganya bermacam-macam tergantung pada tujuan dan bahan yang akan dianalisa. Media penyangga yang sering dipakai dalam elektroforesis antara lain yaitu kertas, selulosa asetat dan gel. Gel yang dipakai dapat berupa pati, agarose ataupun poliakrilamid.

Pada elektroforesis dalam matriks gel poliakrilamid, protein terseparasi ketika protein bergerak melalui matriks tiga dimensi dalam medan listrik. Matriks poliakrilamid berfungsi untuk memisahkan protein berdasarkan ukuran dan menstabilkan pH bufer agar muatan protein tidak berubah.

Poliakrilamid dapat memisahkan protein dengan kisaran berat molekul 500 – 250.000 atau polinukleotida dengan kisaran 5 – 2000 pasang basa. Pori matriks ini terbentuk dari ikatan silang antara akrilamid dan bisakrilamid. Ukuran pori pada gel poliakrilamid dapat dikecilkan dengan cara meningkatkan persentase total akrilamid (atau %T) atau dengan meningkatkan banyaknya ikatan silang (atau %C) dengan bisakrilamid.

Gel 20%T 5%Cbis berarti bahwa kandungan total akrilamid dan bisakrilamid sebesar 20% (w/v) dimana kandungan bisakrilamid 5% dari total akrilamid dan bisakrilamid. Pada %T yang sama, 5%C menghasilkan ukuran pori terkecil. Diatas dan dibawah 5%C, besarnya pori bertambah.

\[
\begin{align*}
\%T &= \frac{\text{g (akrilamid + bisakrilamid)}}{100 \text{ ml}} \times 100 \\
\%C &= \frac{\text{g (bisakrilamid)}}{\text{g (akrilamid + bisakrilamid)}} \times 100
\end{align*}
\]
Untuk mendapatkan hasil separasi protein yang diinginkan, diperlukan %T tertentu yang sesuai. %T yang terlalu tinggi akan menghalangi bergeraknya protein, sedangkan %T yang terlalu rendah akan menyebabkan protein kurang atau tidak terseparasi karena protein bergerak sangat cepat pada gel.

Polimer yang terbentuk menyebabkan gel berpori-pori di dalamnya. Besarnya pori-pori dapat diatur dengan mengubah konsentrasi akrilamid dan bisakrilamid (Tabel 1). Jika diameter pori gel sama dengan X, maka protein dengan ukuran lebih kecil daripada X akan mudah dan cepat bergerak dalam gel, sedangkan molekul berukuran lebih besar dari X juga akan bergerak tetapi lebih lambat.

Tabel 6.1 Konsentrasi Gel Poliakrilamid dengan Separasi Protein

<table>
<thead>
<tr>
<th>Konsentrasi gel (%T)</th>
<th>Berat molekul protein yang masih dapat lewat (Dalton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5 %</td>
<td>(10^3 - 10^6)</td>
</tr>
<tr>
<td>7 %</td>
<td>(10^4 - 10^5)</td>
</tr>
<tr>
<td>30 %</td>
<td>(2 \times 10^3 - 2 \times 10^3)</td>
</tr>
</tbody>
</table>

Gel poliakrilamid dibentuk dari polimer akrilamid CH₂=CH-C(O=)-NH₂ dengan suatu cross-linking agent yaitu N, N’-methylen bisakrilamid atau CH₂=CH-C(=O)-NH-CH₂-NH-C(=O)CH=CH₂. Polimerisasi ini dikatalisis oleh amonium persulfat atau riboflavin yang dapat menghasilkan radikal bebas (Gambar 6.4). Pembentukan radikal bebas dari amonium persulfat dikatalisis oleh N, N, N’,N’,-tetramethyl-ethylenediamine (TEMED), sedangkan radikal bebas dari riboflavin terbentuk dengan bantuan cahaya.

Gambar 9.15 Pembentukan Gel Poliakrilamid Melalui Inisiasi TEMED dan Ammonium Persulfat
Ukuran pori dalam gel poliakrilamid dipengaruhi oleh konsentrasi total akrilamid (%T), sedangkan sifat stiffness dan swelling dipengaruhi oleh jumlah cross-linking agent (%C).

Gambar 9.15 Skema Mekanisme Separasi Protein Berdasarkan Berat Molekul dengan SDS PAGE

b. Jenis Elektroforesis Gel Poliakrilamid berdasarkan Preparasi Sampel

Protein dengan berat molekul besar, protein kompleks atau asam nukleat biasanya dielektroforesis pada kondisi terdisosiasi yaitu dengan mengganggu struktur nativenya. SDS merupakan detergen yang mempunyai sifat polar dan nonpolar yang dapat mengikat protein sedemikian rupa sehingga bagian nonpolar dari SDS tersembunyi ke dalam bagian nonpolar (hidrofobik) dari protein dan gugus sulfat dari SDS yang bermuatan negatif berhubungan langsung atau terekspos pada pelarut.

Berdasarkan preparasi sampel, elektroforesis dibagi dua yaitu:

(1) native atau nondenaturing atau nondisosiasi PAGE

Pada NATIVE-PAGE, protein dipisahkan menurut muatan total, ukuran dan bentuk dari struktur nativenya. Pergerakan protein terjadi karena kebanyakan protein membawa muatan negatif total di dalam running buffer alkali. Densitas muatan negatif yang lebih besar (muatan permolekul yang lebih besar) dari protein akan bermigrasi lebih cepat.
Pada saat yang sama, gaya gesekan dari matriks gel menciptakan efek penyaringan, memperlambat gerakan protein sesuai dengan ukuran dan bentuk tiga dimensinya. Protein kecil menghadapi hanya gaya gesekan kecil sementara protein besar menghadapi gaya gesekan yang lebih besar. Dengan demikian, NATIVE-PAGE memisahkan protein berdasarkan muatan dan massa proteinnya.

(2) Denaturing atau disosiasi atau SDS-PAGE.

![Image of Sodium dodecyl sulfate (SDS) structure]

Gambar 9.16 Struktur Molekul SDS dan Pengaruhnya pada Struktur Protein

Pengikatan protein dengan SDS akan menyebabkan dua hal. Yang pertama yaitu terputusnya ikatan disulfida yang menentukan protein folding dengan kata lain struktur sekunder protein rusak. Yang kedua yaitu akan menyebabkan bagian luar molekul protein terselubungi oleh muatan negatif dari SDS sehingga molekul protein akan terseparasi semata-mata berdasarkan berat molekulnya saja bukan berdasarkan besar dan jenis muatannya karena semua molekul protein sekarang bermuatan negatif. Disosiasi ini terjadi
dengan bantuan pemanasan dan penambahan disulfide reducing agent seperti β-merkaptoetanol atau 1,4-dithiothreitol.

Gambar 9.17 Separasi Protein Multisubunit pada SDS-PAGE. Subunit A terikat secara kovalen pada subunit B dan C yang terikat melalui rantai disulfida

Disosiasi sampel protein ini dilakukan sebelum sampel dielektroforesis. Sebelum dilakukan elektroforesis, sampel ditambah dengan reducing sample buffer disingkat RSB (antar lain terdiri dari SDS 10% dan 2-merkaptoetanol). Campuran sampel dan RSB didihkan pada water bath selama 5 menit kemudian dibirukan dingin dan ditambah sukrose 20 % atau gliserol 20 % dan bromophenol blue 0,005 %. Penambahan sukrose atau gliserol dimaksudkan untuk menambah berat jenis sampel sehingga sampel tidak mengapung tetapi terdeposit atau turun mengendap pada dasar sumur sampel, sedangkan bromophenol blue dipakai sepakai tracking dye untuk menandai batas terjauh dari pergerakan sampel protein pada saat elektroforesis.

Pada saat elektroforesis berlangsung, protein akan bergerak dari elektroda negatif menuju elektroda positif sampai pada jarak tertentu pada gel poliakrilamid tergantung pada berat molekulnya. Semakin rendah berat molekulnya maka semakin jauh pula protein bergerak dengan kata lain mobilitisnya tinggi. Sebaliknya, protein dengan berat molekul
lebih besar akan bergerak pada jarak yang lebih pendek dengan kata lain mobilitisnya rendah.

Berbagai jenis protein pada suatu sampel akan terseparasi (terpisah-pisah) pada gel poliakrilamida tergantung pada mobilitasnya. Protein dengan mobilitas tinggi akan berhenti bergerak pada bagian yang lebih bawah gel, sedangkan protein dengan mobilitas rendah cenderung berhenti bergerak pada bagian atas gel. Dengan demikian, pada jalur pergerakan protein akan didapatkan jajaran protein (disebut sebagai band atau pita protein) yang sudah terseparasi berdasarkan berat molekulnya.

Dalam satu sampel protein bisa lebih dari satu bahkan puluhan band dalam gel poliakrilamida. Dalam kondisi tidak diwarnai, protein tersebut tidak terlihat karena memang protein dalam sampel tidak berwarna. Setelah diwarna dengan staining solution yang mengandung Coomassie brilliant blue R-250, protein yang tidak berwarna tersebut menjadi berwarna biru karena mengikat Coomassie blue. Dalam kondisi ini kita dapat mengetahui keberadaan dan mengukur mobilitas protein untuk kemudian ditentukan berat molekulnya.

Gambar 9.18 Hasil Separasi Protein pada SDS-PAGE sesudah Diwarnai Coomassie Blue

Sumber: https://www.researchgate.net/ SDS gel electrophoresis of T ni hemolymph proteins stained with Coomassie blue

Coomassie blue dapat mendeteksi 1-10 µg protein dalam satu band, sedangkan untuk mendeteksi protein dengan kadar yang sangat kecil (10-100 ng) digunakan pewarnaan perak nitrat yang 100 kali lebih sensitif. Prosedur dan mekanisme pewarnaan dengan perak nitrat serupa dengan proses cetak foto. Protein pada gel akan mengkatalis proses reduksi silver halida pada larutan pewarna menjadi metallic silver yang bisa dilihat.
c. **Fungsi Analisis SDS-PAGE**

SDS-PAGE merupakan suatu teknik dengan kegunaan yang cukup luas, antara lain yaitu untuk analisis kemurnian protein, penentuan berat molekul protein, verifikasi konsentrasiprotein, deteksi proteolisis, identifikasi protein imunopresipitasi, sebagai tahap awal imunobloting, deteksi modifikasi protein, separasi dan pemekatan protein antigen, separasi protein terlabel radioaktif.

1) **Immunoblotting**

2) **Western Blotting atau Imunoblotting**

Western blotting atau imunoblotting adalah istilah yang dipakai untuk proses transfer dan imunodeteksi protein pada gel yang bertujuan untuk (1) mengetahui keberadaan dan berat molekul protein sampel dalam suatu campuran, (2) membandingkan reaksi silang antar protein, (3) mempelajari modifikasi protein selama sintesis. Dengan cara ini protein dalam hitungan nanogram dapat terdeteksi.

Imunodeteksi tidak dilakukan langsung pada gel karena sifat gel yang rapuh untuk dapat melalui proses inkubasi yang lama dan pencucian yang berulang kali. Untuk mengatasi hal itu, maka protein terlebih dahulu ditransfer dari gel ke membran nitro-cellulose (NC) atau membran PVDF (polyvinylidene difluoride). Membran dipakai sebagai tempat melekatnya protein yang diuji karena (1) mudah manipulasinya, (2) mengurangi lama inkubasi dan pencucian, (3) hasil protein yang ditransfer (hasil blot) dapat dipakai lagi untuk imunodeteksi protein yang lain (sesudah diinkubasi dengan detergen untuk menghilangkan probing reagent), (4) blot dapat disimpan sampai 1 bulan (5) blot sesuai untuk berbagai prosedur deteksi.

Prosedur Western blotting diawali dibagi menjadi 6 tahapan yaitu :

(a) **Preparasi sample (bertindak sebagai antigen)**
(b) **Separasi protein pada gel elektroforesis**
(c) **Transfer protein dari gel elektroforesis ke membran PVDF atau NC**
(d) **Bloking nonspecific binding sites pada membran**
(e) **Penambahan antibodi primer, antibodi sekunder**
(f) **Deteksi atau visualisasi pengikatan antigen-antibodi**
Prosedur Transfer

Transfer protein dari gel ke membran dapat dikerjakan dengan tiga cara, yaitu: simple diffusion, vacuum-assisted solvent flow, dan electrophoretic elution. Electrophoretic elution (bisa dikerjakan dengan 2 sistem yaitu wet transfer, semi-dry transfer) merupakan teknik yang banyak dipakai dan direkomendasikan. Bufer transfer dengan kekuatan ionik lemah dipakai untuk mengurangi panas karena arus. Methanol diperlukan untuk meningkatkan pengikatan protein pada membran dan mengurangi pelebaran gel selama proses transfer.

Gambar 9.18 Prosedur Transfer Protein dari Gel ke Membran

Jenis Membran

Membran NC sering dipakai karena mudah penggunaannya dengan kapasitas pengikatan yang tinggi tetapi mudah sobek/rapuh. Membran nilon biasanya dipakai untuk transfer protein hidrofobik tetapi kapasitas pengikatannya rendah. Membran PVDF mempunyai kapasitas pengikatan tinggi dan lebih kuat meskipun preparasi transfernya agak sulit.

Antibodi untuk Imunodeteksi

Antibodi yang dipakai harus mempunyai kespesifikan dan afinitas yang tinggi (108 – 1010 / M). Antibodi mungkin lebih mengenal epitop dengan konformasi protein linier pada blot, karena itulah sampel memerlukan SDS-PAGE.

Antibodi yang dipakai bisa monoklonal ataupun poliklonal. Antibodi poliklonal biasanya mempunyai afinitas tinggi tetapi mengandung antibodi yang tidak spesifik yang mungkin dapat mengikat protein yang tidak diketahui pada crude protein.
Pada sistem direct, hanya dibutuhkan antibodi primer yang spesifik mengikat ke protein sampel. Pada sistem indirect, selain antibodi primer juga diperlukan antibodi sekunder anti-IgG yang akan melekat pada antibodi primer. Antibodi sekunder biasanya diambil dari darah kambing (goat) yang sudah diinjeksi dengan antibodi kelinci (rabbit) sehingga dinamakan goat anti-rabbit IgG.

Untuk visualisasi pengikatan tersebut, diperlukan label berupa enzim atau radioaktif yang dapat dilekatkan pada antibodi primer (untuk direct) atau pada antibodi sekunder (untuk indirect). Enzim seperti horseradish peroxidase (HRP) atau alkaline phosphatase (AP) sering dipakai. Alternatif lain, enzim tersebut dapat dilabel dengan biotin yang akan mengikat streptavidin (avidin) pada HRP atau AP. Sistem biotin-streptavidin lebih sensitif karena visualisasi sampel teramplifikasi.

Enzim tersebut akan merubah substratnya dari tidak berwarna menjadi berwarna yang melekat (terpresipitasi) pada tempat dimana terdapat ikatan antibodi primer dengan protein atau antigennya.

Gambar 9.20 Tahapan Imunobloting Menggunakan Antibodi Sekunder Berlabel Enzim (Sistem direct).
(A) Proses Transfer (B) Bloking (C) Penambahan Antibodi berlabel enzim Deteksi (D) Penambahan substrat (E) Substrat dikonversi menjadi produk insoluble (P)

Gambar 9.21 Immunobloting menggunakan tiga Macam Antibodi Sekunder. (A) Antibodi Berlabel HRP (B) Antibodi Berlabel Biotin dengan HRP-Streptavidin (C) HRP-protein A.

Dengan selesainya topik Teknik Identifikasi Asam Nukleat dan Protein, Anda telah menyelesaikan pembelajaran tentang Biologi Sel dan Molekuler dalam keseluruhan modul ini. Pelajari kembali materi-materi yang perlu Anda perdalam. Dengan bekal materi pada mata kuliah ini, semoga dapat membekali dan mendukung Anda untuk menjadi tenaga kesehatan Ahli Teknologi Laboratorium Medik yang Profesional dalam salah satu tugas kompetensi teknis yang perlu dimiliki.

Latihan

1) Jelaskan analisis protein secara kuantitatif metode biuret!
2) Jelaskan prinsip Polyacrilamide Gel Electrophoreis (SDS-PAGE)!
3) Jelaskan kegunaan dari analisis SDS-PAGE!

Petunjuk Jawaban Latihan

Untuk membantu Anda dalam mengerjakan soal latihan, silakan pelajari kembali materi tentang:

1) Analisis protein secara kuantitatif
2) Teknik analisis protein secara kualitatif menggunakan Polyacrilamide Gel Electrophoreis (SDS-PAGE).
3) Fungsi analisis SDS PAGE.
Ringkasan

1. Metode analisis protein secara kuantitatif terdiri dari metode Kjeldahl, metode titrasi formol, metode spektrofotometri visible (Biuret), metode Lowry, metode BCA assay, metode Bradford, dan metode spektrofotometri UV.

3. Polyacrilamide Gel Electrophoresis (SDS-PAGE) adalah teknik untuk memisahkan rantai polipeptida pada protein berdasarkan kemampuannya untuk bergerak dalam arus listrik, yang merupakan fungsi dari panjang rantai polipeptida atau berat molekulnya. Hal ini dicapai dengan menambahkan deterjen SDS dan pemanasan untuk merusak struktur tiga dimensi pada protein dengan terpecahnya ikatan disulfide yang selanjutnya direduksi menjadi gugus sulfhidril. SDS akan membentuk kompleks dengan protein dan kompleks ini bermuatan negatif karena gugus-gugus anionic dari SDS. SDS adalah detergen anionik yang dapat melapisi protein, sebagian besar sebanding dengan berat molekulnya, dan memberikan muatan listrik negatif pada semua protein dalam sampel.

5. Pengikatan protein dengan SDS akan menyebabkan dua hal. Yang pertama yaitu terputusnya ikatan disulfida yang menentukan protein folding dengan kata lain struktur sekunder protein rusak. Yang kedua yaitu akan menyebabkan bagian luar molekul protein terselubungi oleh muatan negatif dari SDS sehingga molekul protein akan terseparasi semata-mata berdasarkan berat molekulnya saja bukan berdasarkan besar dan jenis muatannya karena semua molekul protein sekarang bermuatan negatif. Disosiasi ini terjadi dengan bantuan pemanasan dan penambahan disulfide reducing agent seperti β-merkaptoetanol atau 1,4-dithiothretol.

6. Hasil elektroforesis protein menggunakan SDS-PAGE kemudian diwarnai menggunakan zat warna Coomassie blue, sedangkan untuk mendeteksi protein dengan kadar yang sangat kecil (10-100 ng) digunakan pewarnaan perak nitrat.

Tes 2

Kerjakan tes berikut dengan memilih jawaban yang paling tepat, dengan memberi tanda silang (X) pada huruf A, B, C atau D di depan pilihan jawaban.

1) Prinsip penetapan kadar protein dengan metode biuret adalah....
 A. ikatan peptida dapat membentuk senyawa kompleks berwarna ungu dengan penambahan garam kupri dalam suasana basa
 B. ikatan peptida dapat membentuk senyawa kompleks berwarna ungu dengan penambahan garam kupri dalam suasana asam
 C. pemisahan molekul seluler berdasarkan atas ukurannya, dengan menggunakan medan listrik yang dialirkan pada suatu medium yang mengandung sampel yang akan dipisahkan
 D. dua molekul bicinchoninic acid akan membentuk chelate dengan masing-masing ion Cu2+, membentuk kompleks berwarna ungu

2) Pengikatan protein dengan SDS tidak menyebabkan terjadinya:
 A. terputusnya ikatan disulfida yang menentukan protein folding dengan kata lain struktur sekunder protein rusak
 B. bagian luar molekul protein terselubungi oleh muatan negatif, sehingga semua molekul protein sekarang bermuatan negatif
 C. molekul protein akan terseparasi berdasarkan besar dan jenis muatannya
 D. molekul protein akan terseparasi berdasarkan berat molekulnya

3) Hasil separasi protein pada SDS-PAGE kemudian divisualisasi dengan pewarnaan menggunakan....
 A. Kristal violet
 B. Coomassie Blue
 C. Etidium Bromida
 D. Zn

4) Antibodi sekunder yang biasanya digunakan untuk tahapan imunodeteksi sistem indirek adalah....
 A. antibodi primer
 B. IgM
 C. anti-IgE
 D. goat anti-rabbit IgG

5) Membran yang digunakan untuk mentransfer hasil separasi protein dari PAGE sebelum dilanjutkan ke tahap imunodeteksi adalah....
 A. nitroselulosa
 B. parafilm
6) Berikut ini kegunaan dari analisis SDS-PAGE untuk analisis protein, kecuali....
A. analisis kemurnian protein
B. penentuan berat molekul protein
C. sebagai tahap awal imunoblotting
D. sebagai tahap awal southern blotting

7) Coomassie Brilliant Blue (CBB) akan berikatan dengan protein dalam sampel pada suasana asam, dengan demikian absorbansi diukur menggunakan spektrofotometer pada panjang gelombang 465-595 nm. Pernyataan tersebut merupakan prinsip pengukuran protein metode....
A. Lowry
B. Biuret
C. Bradford
D. BCA Assay

8) Berikut adalah beberapa tahapan prosedur Western blotting: (1) Transfer protein dari gel elektroforesis ke membran PVDF atau NC , (2) Separasi protein pada gel elektroforesis, (3) Bloking nonspecific binding sites pada membrane, (4) Preparasi sample (bertindak sebagai antigen), (5) Deteksi atau visualisasi pengikatan antigen-antibodi, (6) Penambahan antibodi primer, antibodi sekunder.
Tahapan prosedur Western blotting yang benar adalah....
A. 4-2-1-3-6-5
B. 2-4-1-6-3-5
C. 4-2-1-6-3-5
D. 2-1-4-3-6-5

9) Tujuan penambahan bromophenol blue 0,005% ke dalam sampel sebelum dielektroforesis ialah....
A. untuk menambah berat jenis sampel sehingga sampel turun mengendap pada dasar sumur sampel
B. untuk memvisualisasikan protein hasil elektroforesis
C. sebagai tracking dye untuk menandai batas terjauh dari pergerakan sampel protein pada saat elektroforesis
D. untuk mendisosiasikan protein menjadi subunitnya
10) Imunodeteksi tidak dilakukan langsung pada gel melainkan ditransfer dari gel ke membran nitro-cellulose (NC) atau membran PVDF (polyvinylidene difluoride). Berikut ini yang bukan merupakan alasan membran dipakai sebagai tempat melekatnya protein yang diuji ialah....
A. mengurangi lama inkubasi dan pencucian
B. hasil protein yang ditransfer (hasil blot) dapat dipakai lagi untuk imunodeteksi protein yang lain (sesudah diinkubasi dengan detergen untuk menghilangkan probing reagent)
C. blot dapat disimpan sampai 1 bulan
D. blot dapat disimpan sampai 1 tahun.

Tingkat penguasaan = \(\frac{\text{Jumlah Jawaban yang Benar}}{\text{JumlahSoal}} \times 100\% \)

Arti tingkat penguasaan:
- 90 - 100% = baik sekali,
- 80 - 89% = baik,
- 70 - 79% = cukup,
- < 70% = kurang

Apabila mencapai tingkat penguasaan 80% atau lebih, Anda dapat meneruskan dengan Bab selanjutnya. Bagus! Jika masih di bawah 80%, Anda harus mengulangi materi Bab 9, terutama bagian yang belum dikuasai.
Kunci Jawaban Tes

Tes 1
1. B
2. D
3. A
4. C
5. B
6. C
7. A
8. D
9. A
10. C

Tes 2
1. A
2. C
3. B
4. D
5. A
6. D
7. C
8. A
9. C
10. D
Glosarium

Agarose : Suatu polimer yang terbuat dari rumput laut, terdiri dari pengulangan unit disakarida yang disebut agarobiose. Agarobiose terdiri atas galaktosa dan 3,6-anhydrogalactose yang dihubungkan oleh ikatan α glikosidik. Polimer agarose dapat terdiri lebih dari 100 unit monomer, dengan rata-rata berat molekulnya sekitar 10.000 Da.

Elektroforesis gel : Pemisahan asam nukleat atau protein berdasarkan ukuran dan muatan listriknya, dengan cara mengukur laju pergerakannya melalui suatu medan listrik dalam suatu gel.

Mutagen : Agen kimiai atau fisik yang berinteraksi dengan DNA yang akhirnya menciptakan suatu mutasi.

Reduksi : Perolehan elektron oleh suatu substansi yang terlihat dalam reaksi redoks.
Daftar Pustaka

297
BIOLOGI SEL DAN MOLEKULER

PUSAT PENDIDIKAN SUMBER DAYA MANUSIA KESEHATAN
Badan Pengembangan dan Pemberdayaan
Sumber Daya Manusia Kesehatan
Jl. Hang Jebat III Blok F3,
Kebayoran Baru Jakarta Selatan - 12120
Telp. 021 726 0401
Fax. 021 726 0485
Email. pusdiknakes@yahoo.com